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Abstract

This thesis describes a representation of gait appearance for the pur-
pose of person identification and classification. This gait representation
is based on simple localized image features such as moments extracted
from orthogonal view video silhouettes of human walking motion. A
suite of time-integration methods, spanning a range of coarseness of
time aggregation and modeling of feature distributions, are applied
to these image features to create a suite of gait sequence representa-
tions. Despite their simplicity, the resulting feature vectors contain
enough information to perform well on human identification and gen-
der classification tasks. We demonstrate the accuracy of recognition on
gait video sequences collected over different days and times and under
varying lighting environments. Each of the integration methods are
investigated for their advantages and disadvantages. An improved gait
representation is built based on our experiences with the initial set of
gait representations. In addition, we show gender classification results
using our gait appearance features, the effect of our heuristic feature
selection method, and the significance of individual features.
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Chapter 1

Introduction

This thesis explores the topic of recognizing and classifying people by
their intrinsic characteristics estimated from video sequences of their
walking gait. We have designed an image-based representation for the
overall instantaneous appearance of human walking figures that facili-
tates the recognition and classification of people by their gait. In addi-
tion, we have developed a suite of representations that integrate these
instantaneous appearance features over time to arrive at several types
of gait sequence features that can be used to extract high level charac-
terizations, such as gender and identity, of the walking subjects. These
time-integration methods, spanning a range of coarseness of aggrega-
tion, are designed to answer the question, “How much information is
contained in the time domain of gait appearance?” These gait features
are tested on video data we collected to simulate realistic scenarios.

1.1 Motivation

Gait is defined as “a manner of walking” in Webster’s New Collegiate
Dictionary. However, human gait is more than that: it is an idiosyn-
cratic feature of a person that is determined by, among other things, an
individual’s weight, limb length, footwear, and posture combined with
characteristic motion. Hence, gait can be used as a biometric measure
to recognize known persons and classify unknown subjects. Moreover,
we extend our definition of gait to include the appearance of the person,
the aspect ratio of the torso, the clothing, the amount of arm swing,
and the period and phase of a walking cycle, etc., all as part of one’s
gait.

Gait can be detected and measured at low image resolution from
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video, and therefore it can be used in situations where face or iris in-
formation is not available in high enough resolution for recognition.
It does not require a cooperating subject and can be used at a dis-
tance. In addition, gait is also harder to disguise than static appear-
ance features, such as the face. Johansson [17] had shown in the 1970’s
that observers could recognize walking subjects familiar to them by
just watching video sequences of lights affixed to joints of the walker.
Hence, in theory, joint angles are sufficient for recognition of people by
their gait. However, recovering joint angles from a video of walking
person is an unsolved problem. In addition, using only joint angles ig-
nores the appearance traits that are associated with individuals, such
as heavy-set vs. slim, long hair vs. bald, and particular objects that
one always wears. For these reasons, we have included appearance as
part of our gait recognition features.

1.2 The Challenges

The challenges involved in gait recognition include imperfect foreground
segmentation of the walking subject from the background scene, changes
in clothing of the subject, variations in the camera viewing angle with
respect to the walking subjects, and changes in gait as a result of mood
or speed change, or as a result of carrying objects. The gait appear-
ance features presented in this thesis will tolerate some imperfection
in segmentation and clothing changes, but not drastic style changes
such as pants vs. skirts, nor is it impervious to changes in a person’s
gait. The view-dependent constraint of our gait appearance feature
representation has been removed in a joint project with Shakhnarovich
and Darrell [37] by synthesizing a walking sequence in a canonical view
using the visual hull [23, 27, 26] constructed from multiple cameras.

1.3 Related Work

There have been may studies done in the area of gait recognition and
understanding. They fall into two classes, those that examine the hu-
man ability to interpret gait, and those that develop computational
algorithms for gait recognition and understanding. We will introduce
first the psychophysical evidence for gait recognition, followed by a brief
summary of computational algorithms for gait recognition. A more
thorough discussion of computational gait representation is included in
Chapter 7.
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1.3.1 Psychophysical Evidence

The most recognized and earliest psychophysical study of human per-
ception of gait was done by Johansson [16, 17] using moving light dis-
plays (MLD). MLD’s are lights affixed to the joints of an active subject
to produce visual stimuli for the observing human subject. The initial
experiments showed that human observers are remarkably good at per-
ceiving the human motion that generated the MLD stimuli—only 0.2
sec of the MLD stimuli was needed for observers to identify the motion
as humans walking. In addition, Maas and Johansson [25] speculated
that human observers might be able to identify gender from MLD stim-
uli.

Given Johansson’s early success, Cutting, et al. [10] studied hu-
man perception of gait and their ability to identify individuals using
MLD [9]. The authors used 6 walking subjects and collected the vi-
sual stimuli by placing reflective tape on their joints and recording their
walking motion. Seven observers (including all 6 walking subjects) who
were familiar with one another were asked one month later to identify
their friends using the MLD stimuli. The authors reported that the
observers correctly identified the walkers between 20% to 58% (chance
performance was 16.7%) of the time, with better performance after
the observer had gained some experience viewing the MLD. More in-
terestingly, based on responses of introspection by the observers, the
authors speculated that the observers consciously designed algorithms
for person identification based on MLD stimuli rather than using di-
rect perception—when the observer just “sees” the identity of the walk-
ing subject. They further speculated that human observers could be
trained to use MLD to identify familiar walking subjects.

Kozlowski and Cutting [22] conducted an initial study of human
perception of gender through MLD using a small set (3 men, 3 women)
of walking subjects and 30 observers. Their results showed that human
observers were able to correctly identify gender using full body joint
markers approximately 70% of the time, although some subjects were
consistently mis-classified. In addition, the authors discovered that the
markers placed on the upper body of the walking subject appeared to
be more significant for gender classification than those on the lower
body joints. Barclay et al. [1] expanded the experiments to include
more walking subjects (7 men and 7 women) for gender classification.
The authors reported human observers achieved average correct iden-
tification rate of 65%. They also demonstrated that shoulder and hip
sizes were significant factors for correct gender identification by human
observers.
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The above mentioned psychophysical studies, while interesting, led
us to doubt the utility of using purely joint angles or joint locations for
person recognition and gender classification. Particularly in the gender
classification case, introspection shows that we can identify the gender
of walkers at rates much higher than 65%. It is hence possible that we
rely much more on familiarity cues, such as the length of hair, color and
style of clothing to identify gender. These familiarity cues are much
more readily available to the observer than joint locations. This is the
assumption that led us to arrive at our own definition of gait, that is,
gait for the purpose of identification and gender classification needs to
include the appearance of the walking subject.

1.3.2 Computational Approach to Gait Recognition

There has been an explosion of research on gait recognition in recent
years. We attempt to give a summary of some examples below, but
this listing is by no means intended to be complete. A more in-depth
treatment of the representational issues will be presented in Chapter 7.

Given the ability of humans to identify persons and classify gender
by the joint angles of a walking subject, Goddard [13] developed a con-
nectionist algorithm for gait recognition using joint locations obtained
from moving light displays. Bobick and Tanawongsuwan [41] used joint
angles of the lower body obtained from motion capture to determine
the extent of identity information present in joint angle data. However,
computing joint angles from video sequence is still a difficult problem,
though several attempts have been made [4, 39, 12]. Particular difficul-
ties of joint angle computation from monocular video sequence include
occlusion and joint angle singularities. Self-occlusion of a limb from the
camera view causes difficulties in tracking the hidden limb(s). Rehg and
Morris [34] pointed out the singularity in motion along the optical axis
of a camera.

There have been a number of appearance-based algorithms for gait
and activity recognition. Cutler and Davis [8] used self-correlation of
moving foreground objects to distinguish walking humans from other
moving objects such as cars. Polana and Nelson [33] detected period-
icity in optical flow and used this to recognize activities such as frogs
jumping and humans walking. Bobick [3] used a time-delayed mo-
tion template to classify activities. Little and Boyd [24] used moment
features and periodicity of foreground silhouettes and optical flow to
identify walkers. Nixon, et al. [30] used principal component analysis
of images of a walking person to identify the walker by gait. Shutler, et
al. [38] used higher-order moments summed over successive images of a
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walking sequence as features in the task of identifying persons by their
gait. Johnson and Bobick [18] used static parameters of the walking
figure, such as height and stride length, to identify individuals.

The correlogram method for differentiating between human and car
motion was applied by BenAbdelkader [2] for the identification of in-
dividuals. The authors applied principle component analysis to the
correlogram and used the principle components for recognition.

The work described in this thesis is most closely related to that of
Little and Boyd [24]. However, instead of using moment descriptions
and periodicity of the entire silhouette and optical flow of a walker, we
divide the silhouettes into regions, compute statistics on these regions,
and explore a number of methods to integrate the information in the
time dimension. We also further study the capacity of our features in
tasks beyond person identification, such as gender classification.

1.4 The Road Map

In the following chapters we will discuss the representations used to
capture information about gait, present person recognition and clas-
sification results using these representations, and discuss alternative
representations and future directions of research relevant to gait. The
representations of gait include two components, the gait image repre-
sentation and the gait sequence representation.

We take the view that gait can be directly measured from a video
sequence by capturing the independent descriptions for each succes-
sive image instance. Chapter 2 presents a scheme to represent gait
appearance related features in a silhouette image based on moments
computed from localized regions of a video frame. Chapter 3 describes
a number of methods to aggregate the gait image representation across
time to arrive at compact representations of gait sequences. These ag-
gregation methods vary in their amounts of abstraction of time, from
the coarsest abstraction of time to no abstraction at all, and in the
amount of abstraction of feature distributions. These aggregated gait
representations are tested on a gait dataset we have collected to explore
their recognition performances, and the results are presented in Chap-
ter 4. In addition, in Chapter 5 we present gender classification results
using the gait sequence representation and discuss the effect of noise
on the effectiveness of a gait representation in performing recognition
tasks. In Chapter 6 we briefly describe joint work that resolves the
view dependent constraint of our gait recognition algorithm. Chapter
7 contains discussions on what has been learned in the process of work-
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ing on gait recognition and gender classification from video data: the
advantages and the shortcomings of the representations that we had ex-
perimented. Finally, we discuss alternative representations, direction
of future work, and speculate on integration of gait information into a
general recognition and surveillance scenario.
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Chapter 2

Gait Image
Representation

The usual full human walking cycle for one leg consists of the following
stages: the initial contact of the foot to the ground, the stance position,
to the double support stage, and then the swing of the leg to make the
contact for the next step. The majority of people have symmetric walk,
i.e., the actions carried out by the two legs are nearly identical and are
a half a cycle offset in phase from each other. Recognition by gait, in
the traditional sense of joint angle description of gait, is equivalent to
detecting the differences in the way individuals carry out the stages of
a walking cycle and how they make the transitions between the four
stages, i.e., the underlying trajectories used by the limbs to accomplish
the walking action. Because we take the position that the appearance
of a walker is also indicative of the identity, our representation of the
gait image includes descriptions of the appearance.

In this thesis, we are primarily concerned with a view-dependent
method of extracting gait appearance features. We consider the canon-
ical view of a walking person to be that which is perpendicular to the
direction of walk. Figure 2.1 shows an example of the type of walking
video data that our algorithm is designed to process and use to rec-
ognize to classify subjects. To simplify the problem of detecting the
foreground walking figure, we use gait video data collected using a sta-
tionery camera. Also, we assume that only one subject is in the view
at a time to simplify the person tracking problem. Finally, we assume
that the video is sampled at a known fixed interval so that the time
information can be meaningfully recovered.

To remove the effect of changing clothing colors, only the silhou-
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(a) t=4 (b) t=6 (c) t=8

(d) t=10 (e) t=12 (f) t=14

(g) t=16 (h) t=18 (i) t=20

(j) t=22 (k) t=24 (l) t=26

Figure 2.1: An example of gait video used for recognition and classifi-
cation.
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ettes of the walking subjects are used in the gait representation. In
addition, the silhouettes are scale-normalized to remove the effect of
changing depth of the walking subject in the view of the camera. A
side effect is that we lose the information about height and size in cases
when the subjects are walking at the same depth from the camera. We
also assume that the silhouette of the walker is segmented from the
background using an existing algorithm (details to follow).

We would like our gait feature vector to have the following proper-
ties: ability to describe appearance at a level finer than the whole body;
robustness to noise in video foreground segmentation; and simplicity of
description and ease of extraction. The walking action involves move-
ments of different components of the body, hence it is reasonable to
describe the components separately. Ideally, one would like a descrip-
tion for each of the body components, such as the arms, the torso, and
the legs. However, segmenting the silhouette into body components is
a difficult problem, especially when the silhouette contains a signifi-
cant amount of noise. A number of features intuitively come to mind
that may measure the static aspects of gait and individual traits. One
such feature is the height of an individual, which requires calibrating
the camera to recover distances. Other features include the amount
of bounce of the whole body in a full stride, the side-to-side sway of
the torso, the maximum distance between the front and the back legs
at the peak of the swing phase of a stride, the amount of arm and
leg swing, etc. We do not use all of these features for various reasons
such as inaccessibility (the side-to-side sway of torso) or difficulties in
obtaining features, such as detecting the peaks of swing phase when
foreground segmentation is noisy and includes shadows. We use a sim-
ple yet robust fixed grid system to describe localized silhouette shapes.
We will discuss alternative gait image representations in Chapter 7.

Our algorithm for deriving a gait silhouette image representation
involves the following steps:

1. The foreground consisting of the walking figure is extracted from
a gait video sequence.

2. The silhouette is divided into regions using a fixed grid system.

3. Each region of a silhouette is modeled using a set of ellipse pa-
rameters.

4. The set of ellipse parameters from all regions of the silhouette
plus one additional global silhouette parameter is concatenated
to form a gait image feature vector.
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In the following sections we describe in detail the steps taken to arrive
at the gait image feature vector.

2.1 Preprocessing: Silhouette Extraction

Given a video of a subject walking across the plane of the image, we
are only interested in the foreground walking subject. Hence the walk-
ing figure needs to be segmented out from the background. To that
end, we use an existing adaptive background subtraction algorithm by
Stauffer [40], which we summarize below.

Stauffer developed a real-time adaptive background subtraction al-
gorithm that models the background as a mixture of Gaussians, which
are updated online to accommodate changing environmental effects,
such as global lighting changes and local changes such as the shim-
mer of leaves in the wind. Specifically, the background description is a
pixel-based model where each pixel is described by a number of Gaus-
sian distributions. Each of these Gaussian distributions models a range
of colors that are observed at that pixel. At each pixel, the Gaussian
models are weighted by a factor that corresponds to the probability of
observing a pixel value that is described by the given Gaussian, assum-
ing the observation comes from the background. The weight of each
Gaussian and the parameters of the Gaussian are updated by each new
observation based on some rate of adaptation. An observation that
agrees with an existing Gaussian model of a pixel increases the weight
of that Gaussian model. Conversely, the lack of an observation that
agrees with a Gaussian model decreases the weight of the model. A
new observation that falls outside of the range described by the multi-
ple Gaussians is considered a foreground pixel, and the least likely of
the Gaussian models for the particular pixel is replaced with one that
models the current observation. A new pixel value that falls into the
range of the newly created Gaussian is still considered a foreground
pixel, but each new observation of this kind increases the weight of the
newly created Gaussian, until such point when the weight of the Gaus-
sian passed a threshold making it a background color Gaussian model.
In other words, an object that moves into a scene and stays put will
eventually be considered part of the background. Hence the adaptive
nature of this background subtraction algorithm.

Three Gaussians are used to model the background. Because our
data was collected from indoor environments—with very little global
lighting change such as that caused by moving clouds—the learning
rate, i.e. the rate of adaptation of the background model, is set to
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be very low. In addition, the first 10 frames of a video sequence are
assumed to contain only background. Once the foreground image is
produced using the algorithm described above, several levels of morpho-
logical operators [15] are applied to remove spurious small foreground
objects and to connect parts of large foreground objects that became
disconnected in the background subtraction process. In the case of
our gait data, the remaining largest foreground object is always that
of the walking subject. The foreground object is cropped and scaled
to a standard size. Because we would like a gait representation that
is independent of the color of clothing worn by the subjects, only the
silhouette of the walking subject is retained. The color of clothing can
be an important indicator of the identity of the subjects under certain
circumstances. However, modeling clothing color distribution is not an
essential part of this thesis and thus the color information is discarded.
These cropped, centered, and scale-normalized silhouettes are the input
to our gait recognition and classification algorithm. Figure 2.2 shows an
example sequence of silhouettes extracted from a gait video sequence.
The quality of silhouettes varied drastically over time, mostly affected
by strong ceiling lights and the position of the subject relative to these
lights. Figure 2.3 shows several examples of the amount of noise in the
silhouettes that are caused by indoor lighting effects and small motions
in the background such as the flutter of draperies. These silhouette
examples show that our gait representation must be robust to these
types and amounts of noise in the silhouettes.

2.2 The Image Representation

Our gait appearance feature vector is comprised of parameters of mo-
ment features in image regions containing the walking person averaged
over time. For each silhouette of a gait video sequence, we find the
centroid and proportionally divide the silhouette into 7 parts as shown
in Figure 2.4a. The frontal-parallel view of the silhouette is divided
into the front and back sections (except for the head region) by a ver-
tical line at the silhouette centroid. The parts above and below the
centroid are each equally divided in the horizontal direction, resulting
in 7 regions that roughly correspond to: r1, head/shoulder region; r2,
front of torso; r3, back of torso; r4, front thigh; r5, back thigh; r6, front
calf/foot; and r7, back calf/foot. These regions are by no means meant
to segment the body parts precisely. For the present purposes, we are
only interested in a method to consistently divide the silhouette of a
walking person into regions that will facilitate the person recognition
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(a) t=9 (b) t=10 (c) t=11 (d) t=12

(e) t=13 (f) t=14 (g) t=15 (h) t=16

(i) t=17 (j) t=18 (k) t=19 (l) t=20

Figure 2.2: Examples of silhouettes extracted using an adaptive back-
ground subtraction algorithm by Stauffer [40].
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(a) t=9 (b) t=10 (c) t=11

(d) t=12 (e) t=13 (f) t=14

Figure 2.3: Examples of noisy silhouettes.
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and gender classification tasks.

(a) (b)

Figure 2.4: The silhouette of a foreground walking person is divided
into 7 regions, and ellipses are fitted to each region.

For each of the 7 regions from a silhouette, we fit an ellipse to the
portion of foreground object visible in that region (Figure 2.4(b)). The
fitting of an ellipse to an image region involves computing the mean and
the covariance matrix for the foreground pixels in the region. Let I(x, y)
be the binary foreground image of a region to which we want to fit an
ellipse. Assume that the foreground pixels are 1 and the background
pixels are 0, then the mean x and y positions of the foreground pixels,
or the centroid of the region, is

x =
1
N

∑
x,y

I(x, y)x, (2.1)

y =
1
N

∑
x,y

I(x, y)y, (2.2)

where N is the total number of foreground pixels:

N =
∑
x,y

I(x, y). (2.3)

The covariance matrix of the foreground region is then,[
a c
c b

]
=

1
N

·
∑
x,y

I(x, y)·
[

(x − x)2 (x − x)(y − y)
(x − x)(y − y) (y − y)2

]
. (2.4)

The covariance matrix can be decomposed into eigenvalues, λ1, λ2 and
eigenvectors v1,v2 which indicate the length and orientation of the
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major and minor axes of the ellipse:
[

a c
c b

] [
v1 v2

]
=

[
v1 v2

] [
λ1 0
0 λ2

]
. (2.5)

The elongation of the ellipse, l, is given by

l =
λ1

λ2
, (2.6)

and the orientation, α, of the major axis is given by

α = angle(v1) = arccos
(

v1 · x
|v1|

)
, (2.7)

where x is the unit vector [1, 0]. The orientation is only defined modulo
π, so it is chosen to lie in a range of π appropriate for each region of
the silhouette. In other words, the range of orientation is adapted for
each region feature, but the same set of orientation ranges is used for
all walking silhouettes.

The ellipse parameters extracted from each region of the silhouette
are the centroid, the aspect ratio (l) of the major to minor axes of the
ellipse, and the orientation (α) of major axis which forms the region
feature vector f(ri),

f(ri) = (xi, yi, li, αi), where i = 1, . . . , 7. (2.8)

These moment-based features are robust to noise in the silhouettes
obtained from background subtraction as long as the number of noise
pixels is small and not systematically biased. The features extracted
from each frame of a walking sequence consists of features from each
of the 7 regions, i.e. the frame feature vector Fj of the jth frame is,

Fj = (f(r1), . . . , f(r7)). (2.9)

In addition to these 28 features, we use one additional feature, h, the
height (relative to body length) of the centroid of the whole silhouette
to describe the proportions of the torso and legs. The intuition behind
this measure is that an individual with a longer torso will have a sil-
houette centroid that is positioned lower (relative to body length) on
the silhouette than someone with a short torso. The complete set of
features extracted from each gait silhouette is summarized in Table 2.1.
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y coordinate of the whole body centroid
+

7 silhouette regions: 4 ellipse parameters:
head region x coordinate of the region centroid
chest × y coordinate of the region centroid
back orientation of the major axis
front thigh elongation
back thigh
front calf/foot
back calf/foot

Table 2.1: A summary of the 29 gait image features extracted from
each silhouette image.

2.3 Characterization of the Silhouette Im-

age Representation

The representation of gait images we have chosen has several properties.
The choice of silhouette over color images of the walking figure allows
us to ignore the variations in clothing colors of the subject. However,
suppose that the purpose of watching people walk is to collect any type
of identifying information about the subjects. Then clothing colors may
actually be indicative of the subject identity if enough data could be
collected to model the distribution well. If a subject has never worn
bright-colored clothing in the history of observations, then a walking
figure with brightly colored clothing is unlikely to be that subject.
Additionally, silhouette images also discards information about hair
and skin color. These types of information could be incorporated into
a gait appearance feature vector if need be.

Our choice of the silhouette of a walking figure and the point of
view—the frontal parallel view—also has other side effects. For exam-
ple, the majority of humans have fairly symmetric walk; that is, the left
step and the right step look roughly the same from a side view. This
is true of all the subjects in our data set. Hence there is no distinction
between the left step and the right step of a walking cycle. In theory,
one could walk in the half-step style—that is, from the double support
to the stance stage on one leg and the initial contact to swing phase
on the other leg—and the silhouette generated with such a walk would
be the same as that generated by a full walking cycle. In reality, if one
really tried to carry out a half step walk it would look very different
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from a normal walking gait because the dynamics are significantly dif-
ferent: the forward momentum at the swing phase of the walking cycle
has to be arrested, hence changing the dynamics.

We made a choice to divide the silhouette into a particular set of
regions. The regions are divided into a fixed number, seven, and into
a fixed grid. They do not correspond to biologically relevant segmen-
tation of body components. These seven regions are chosen to be very
easy to compute in contrast to methods that locate the joints and seg-
ment the body at those joints. There are numerous alternative methods
to segment the silhouette. We will discuss some of the alternatives in
Chapter 7.
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Chapter 3

Gait Sequence
Representation

The gait silhouette images representation described in the previous
chapter produces for each gait video sequence a set of time series of
all image features. Our goal is to use the information contained in
the time series to extract higher level descriptions about the walking
subject, such as the gender or the identity. To that end, we would like
to answer the following question: “How much information is contained
in the feature values that is indicative of gender or identity?”

This chapter discusses the various methods that we have tested in
modeling the distribution of instantaneous gait image feature values
and in aggregating them over time. In particular, we investigated four
methods ranging in coarseness of time aggregation for modeling feature
distributions:

1. Averaging gait appearance features across time (which amounts
to the zeroth harmonic components of the time series).

2. Histogram of gait appearance features accumulated over time.

3. Fundamental and higher harmonics of the time series.

4. Direct matching of gait appearance features time series.

Each of these methods is intended to test assumptions about the nature
of the time series that represents gait. The averaged appearance dis-
cards the time dimension, decouples the different parts of the body, and
assumes that the distributions of shape appearance features—which are
derived from moment ellipses—are completely described by their means
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and variances, and that the mean can be optimally estimated by the
average of samples. For example, this would be the case for a normal
distribution with a given variance. The appearance histogram method
differs from the averaged appearance method in that it does not assume
any parametric distribution of shape appearance, but it still discards
the time dimension and decouples the silhouette components. The rel-
ative phase portion of the fundamental harmonic components method
preserves the coupling between the silhouette components. The magni-
tude portion of the fundamental harmonic measures the maximum size
of change in appearance. The fundamental period retains some infor-
mation about time. However, the only way the fundamental harmonic
components could completely describe the time series of gait image
features is if the time series were perfectly sinusoidal. The addition of
higher harmonics to the fundamental harmonic components generalizes
the shape of the time series signals, although it still assumes periodic-
ity. The direct matching of gait appearance features acts as a baseline
comparison that includes no time aggregation.

3.1 Re-cap of Gait Image Appearance Fea-
tures

To recap, we have 29 features that are measured directly from a silhou-
ette of a walking human figure:

• The relative height of the centroid of the whole body, which cap-
tures the intuitive notion of whether a person has long or short
torso relative to his or her body length (a single feature).

• Four ellipse parameters: the x, y coordinates of the centroid,
the orientation, and the elongation, times each of seven compo-
nents of the body silhouette: the components that roughly corre-
spond to head region, chest, back, front thigh, back thigh, front
calf/foot, and back calf/foot, giving a total of 28 features.

These 29 features are extracted from each frame of a walking silhouette
sequence. Hence, each video sequence is reduced to a representation
of 29 time series of these features, an example of which is shown in
Figure 3.1.

These time series are cumbersome descriptions of the appearance of
a person’s gait and may not lend themselves to robust generalization.
The remaining sections of this chapter describe the various methods we
have used to aggregate the 29 time series to generate composite gait
sequence features.
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Figure 3.1: An example of the 29 gait appearance features time series
from one walking sequence.

30



3.2 Average Appearance Features

The simplest and most compact way to summarize the set of 29 gait
feature time series is to assume that all of the features are normally
distributed and hence can be represented easily by their means and
standard deviations. Specifically, the gait average appearance feature
vector of a sequence s is,

s = (meanj(hj), meanj(Fj), stdj(Fj)), (3.1)

where j is a time index and j = 1, . . . , last frame, hj is the relative
height of the whole body, and the Fj ’s are the ellipsoidal descriptions
of the 7 silhouette regions, and s is 57-dimensional. This feature set
is very simple to compute and robust to noisy foreground silhouettes.
Intuitively, the mean features describe the average-looking ellipses for
each of the 7 regions of the body; taken together, the 7 ellipses describe
the average shape of the body. The standard deviation features roughly
describe the changes in the shape of each region caused by the motion
of the body, where the amount of change is affected by factors such as
how much one swings one’s arms and legs. The mean of the relative
height of the body centroid is used to capture the intuitive concept of
the relative size of the torso to body length. While people generally
walk with some amount of bounce in their step cycle, the silhouettes
that we use are centered on the centroid of the subject, hence factoring
out most of the bounce, or equivalently, the standard deviation of the
height of the silhouette centroid.

The Euclidean distance in the 57-dimensional gait average appear-
ance feature space is used to compare two gait video sequences for
their resemblance. However, the dynamic ranges of the dimensions dif-
fer drastically from one another, resulting in the dimensions with large
dynamic range being over-represented in the distance computation. We
start with the simplifying assumption that all dimensions of the gait
average appearance features are equally significant in capturing the
differences between gait video sequences and normalize each dimension
by subtracting out the mean of that dimension and then dividing by
the standard deviation. The Euclidean distance can either be com-
puted using the normalized features, or weighted by the significance of
each dimension in the recognition/classification task. Specifically, the
distance d between two gait average appearance features w and v is,

d2 = (w − v)WC−1
s (w − v)T (3.2)

where C−1
s is the covariance of the gait average appearance feature, s,

and W is a weighting factor for each dimension. We make the sim-
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plifying assumption that the different dimensions of the gait average
appearance feature are independent, hence both the weight matrix and
the covariance matrix are assumed to be diagonal. The weighting factor
W is used either to select some of the feature components for distance
computation or to weight feature components by their effectiveness in
recognition and classification tasks. The details of the weighting factor
will be described in the next chapter.

Figure 3.2 shows an example of distances computed using the gait
average appearance features between pairs of 40 gait sequences selected
from our database. All the sequences for each individual are consecu-
tive, so their similarity is evident in the block structure of the matrix

50

100

150

200

250

Gait sequence ID

G
ai

t s
eq

ue
nc

e 
ID

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

Figure 3.2: An example of pairwise distances between sequences using
the gait average appearance feature. The diagonal is self-distance, while
the block structures reveal the extent of the consistency of distance as
a measure of identification.
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3.3 Appearance Histogram

The second method of feature time aggregation is the appearance his-
togram. The means and the standard deviations of the average ap-
pearance gait feature are very coarse measures of the distribution of
the 29 gait image features over time. While one could model the fea-
ture distributions with some other parametric models that are more
suitable for the data, we instead simplify the modeling process with a
non-parametric distribution, the histogram. The only parameters that
need to be globally assigned for the histogram of each feature are the
number of bins and size of each bin. The similarity between two gait
sequences can be easily measured by comparing their complete sets of
histograms.

The range for each feature histogram is based on the mean and
the standard deviation of the sequence features, i.e., the average ap-
pearance described in the previous section. For each of the 29 features
extracted from a gait silhouette, fi, where i = 1, . . . , 29, the edges of
the histogram of the feature are given by:

left edge(fi) = min
s

(meant(fi(s, t))) − max
s

(stdt(fi(s, t))),(3.3)

right edge(fi) = max
s

(meant(fi(s, t))) + max
s

(stdt(fi(s, t))),(3.4)

where s is the index for gait sequences in our database, and t is the
time frame index for each gait sequence. This range accommodates
almost all feature values and, in practice, results in the histogram of
each sequence feature spanning less than half of the range.

A good choice for the number of bins in a histogram depends on the
amount of data to be used. The gait silhouettes display a periodic na-
ture with a period of between 6 to 9 frames for most people walking in
their normal speed (see the next section for the fundamental period of a
walking silhouette). The primary gait database used in this thesis con-
tained between 55 to 80 frames for each walking sequence. Balancing
between having good resolution in the histogram bins and maintaining
a good estimation of the distribution given the number of samples per
sequence, we conclude that between 15 to 30 bins will be sufficient. We
arbitrarily chose to use 20-bin histograms for all features.

Given the 29 gait image features extracted from each frame of a
gait video sequence, we tally the features each into a 20-bin histogram,
resulting in a 20 × 29 matrix of gait features. Each histogram is nor-
malized to sum to 1, making them probability distribution functions.
Figure 3.3 shows an example of the gait appearance histogram for a
particular walking video sequence.
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Figure 3.3: An example of gait appearance features binned over time
from one walking sequence.
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The similarity between two gait sequences s and t is measured by
a normalized correlation of the histograms and summed over the 29
features, i.e.,

d(s, t) =
29∑

i=1

Wihi(s) · hi(t) (3.5)

where Wi is the weighting factor for feature component i. Summing
over all 29 inner products serves to increase the signal-to-noise ratio of
the similarity measure. The similarity score of pair-wise comparison of
sequences looks very much like that shown in Figure 3.2, except with
the intensities reversed because this is a similarity score, not a distance.

While the average appearance and the appearance histogram both
capture the distribution of the gait image appearance features, they
discard information about the correlation between different regions of
the silhouette. In other words, one could take a gait video sequence,
cut each image into the 7 image regions described in the previous chap-
ter, shuffle each region in time independently of any other region, re-
assemble the video sequence and the resulting gait sequence would have
exactly the same average appearance and the same appearance his-
togram as the original video sequence. The time dimension has been
discarded by both types of features. To recover from this shortcoming,
we investigate two additional types of features which do take into con-
sideration the time dimension within each image region and between
image regions: (1) the harmonic decomposition and (2) direct sequence
matching using dynamic time warping.

3.4 Harmonic Decomposition

Walking is a mostly periodic activity [29, 28]. Hence, it seems natural
to use the harmonic components as gait features. We use the Fourier
decomposition of the time series of the gait image features as the basis
from which to extract the fundamental and higher order harmonics.
Intuitively, the magnitude measured at the fundamental frequency is a
measure of the overall change undergone by the corresponding feature,
and the relative phase between different time series is an indication of
the time delay between the different features. The higher harmonics
measured with respect to the fundamental harmonic describe the non-
sinusoidal but still periodic trajectory that a feature undergoes.

A full walking cycle, or a stride, is comprised of two steps, the left
step and the right step. However, because we are only using the silhou-
ette of the walking video and our image plane is parallel to the path
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of walk, it is difficult to distinguish the left and the right step of each
walking cycle assuming that the two steps are symmetric. The only
difference stems from a small change caused by perspective distortion.
Therefore, the fundamental period of each time series consists of half
of a walking cycle, that is, either the left step or the right step. On the
other hand, most humans have slightly asymmetric gait between the
left step and the right step caused by minor differences in the lengths
of the two legs and their weight bearing capabilities.

To determine if the asymmetric gait is detectable from the time se-
ries of the gait image features, we computed the Fourier components of
the time series to extract the fundamental period (to be discussed in the
following section). The majority of humans take slightly under one sec-
ond for a full stride. Thus, under the video sampling rate of 15 frames
per second, that translates to a period of approximately 15 frames. Our
analysis shows that the dominant period of sequences to lie between 6
and 9 frames. In addition, the power spectra sometimes shows a dip at
the frequency corresponding to the full stride period. When the power
spectra do show a high magnitude at the frequency corresponding to
the full stride, it is not stable across different sequences of a subject
taken on the same day. Hence we conclude that the slight asymme-
try in the walk of normal subjects is either not detectable or cannot
be accurately detected from our feature set. The Fourier component
corresponding to the half stride, on the other hand, is always present.
Thus we take the fundamental period to be that of one step.

Because our gait data are short video sequences ranging from 50 to
80+ frames, if we take the Fourier transform directly there is a lack
of resolution in the spectral domain. The time series need to be zero-
padded so that the spectral domain can be sampled more densely. To
make the comparisons between different sequences easier, all sequence
signals are zero-padded to the same length. We chose to zero-pad the
signals to a sample length of N = 400. Given a video sampling rate
of 15 frames per second, and the fundamental period of the step at
between 6 to 9 frames, a sample length of 400 gives us resolution of
approximately 1/6 of a frame in the range of the fundamental period.
The discrete periods that we are able to extract are: 9.1, 8.9, 8.7, 8.5,
8.3, 8.16, 8, 7.8, 7.7, 7.5, 7.4, 7.27, 7.14, 7, 6.9, 6.8, 6.67, 6.56 frames
per step. As we will discuss later, our gait video sequences contain a
minimum of three full strides and a maximum of a little more than four
full strides, giving us between six to nine walking steps to estimate the
fundamental period of one step.

To distinguish the harmonic decomposition feature from the aver-
age appearance features, we remove the mean of all components, thus

36



0 200 400
0

0.5

1
he

ad

x coordinate of centroid

0 200 400
0

y coordinate of centroid

0 200 400
0

5

orientation

0 200 400
0

1

2

elongation

0 200 400
0

0.5

ch
es

t

0 200 400
0

0.5

0 200 400
0

2

4

0 200 400
0

5

10

0 200 400
0

0.5

ba
ck

0 200 400
0

0.5

0 200 400
0

2

4

0 200 400
0

10

20

0 200 400
0

0.5

1

fr
on

t t
hi

gh

0 200 400
0

0.5

1

0 200 400
0

5

10

0 200 400
0

20

40

0 200 400
0

0.5

ba
ck

 th
ig

h

0 200 400
0

0.5

0 200 400
0

5

10

0 200 400
0

5

10

0 200 400
0

1

2

fr
on

t c
al

f

0 200 400
0

0.5

1

0 200 400
0

10

20

0 200 400
0

10

20

0 200 400
0

1

2

ba
ck

 c
al

f

0 200 400
0

0.5

1

0 200 400
0

10

20

0 200 400
0

10

20

Figure 3.4: An example of the power spectra computed from the 28
gait image feature time series of a walking sequence.

setting the DC component of the Fourier transform to 0. In fact, the
mean components of the gait average appearance features are the ze-
roth harmonic components. The harmonic analysis of time series is
only applied to features extracted from the 7 component regions of the
silhouette. Thus we are left with 28 gait image feature time series from
which we compute the Fourier transform. Figure 3.4 shows an example
of the power spectra of the 28 zero-padded signals. Some of the power
spectra appear to have dominant peaks, while others lack such peaks.
Most of the spectra show a fundamental frequency, some even have siz-
able magnitude in the second harmonic, but few show any obvious third
harmonic. Moreover, there are several reasons we can only reasonably
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expect to recover the first and the second harmonic. First, the higher
harmonics have lower amplitude and are therefore more susceptible to
noise. Second, because our subjects do not have perfectly periodic
walks, localization of the fundamental frequency contains some error,
which are amplified at the higher harmonics, thus further increasing the
amount of noise in the magnitude and phase estimates at the higher
harmonics.

3.4.1 The Fundamental Harmonic

Our gait fundamental spectral decomposition feature vector for a se-
quence is

t = (Ω1, |Xi(Ω1)|, phase(Xi(Ω1))), (3.6)

where

Xi = DiscreteFourierTransform(Fj=1...last(f(ri))), i = 1 . . . 28, (3.7)

Ω1 is the fundamental walking frequency of a given sequence—which in
the case of silhouettes, corresponds to a single step—and i indicates the
type of feature from the four ellipse descriptions of the seven silhouette
regions. Intuitively, the magnitude feature components measure the
amount of change in each of the 7 regions due to motion of the walking
body, and the phase components measure the time delay between the
different regions of the silhouette.

Because of noise in the silhouettes, and the fact that subjects do
not have perfectly periodic walks, the time series of region features is
also noisy. Thus, the power spectra of many region features do not
show an obvious dominant peak indicating the fundamental walking
frequency. Some even have a component at some very low frequency
whose magnitude is much larger than that of the real fundamental
walking frequency. This was investigated and it was discovered that this
low frequency component corresponds to particularly strong shadows
caused by a ceiling light that appear in one of the background from
which we collected gait videos on two different days. Even when the
peak frequencies were found in a silhouette region feature, they often
did not agree between different region features. Therefore, we use a
normalized averaging of power spectra of all region features resulting
in a much more dominant peak frequency, Ω1, that is also consistent
across all signals:

Z =
28∑

i=1

|Xi|∑
ω |Xi(ω)| . (3.8)
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Figure 3.5: The normalized average power spectrum of 28 gait im-
age features. While this particular average power spectrum shows the
global peak at the fundamental walking frequency, there are others that
show the global peak at a much lower frequency that may corresponding
to environmental effects.

Figure 3.5 shows an example of the normalized average spectrum for
a gait sequence. Even with the normalized average power spectra Z,
the global highest peak sometimes still does not correspond to normal
walking frequency but to external environmental factors such as strong
lighting effects. Hence, we only look for dominant peaks in the region
of the normalized average spectrum corresponding to normal walking
frequencies of between 5 to 10 frames for a half-stride period.

The magnitude of each region feature at the fundamental frequency
Ω1 can be used directly, but the phase cannot be used directly because
each gait sequence is not predetermined to start at a particular point
of a walking cycle. Hence the phase is not a stable feature of the
gait. Instead, we need a feature related to phase that is translation
independent over all gait video sequences and will capture the time
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delay between different regions of the gait image feature. We compute
the phases of all region features relative to the one particular region
feature that is “most stable.” The stability of a feature is determined
by how closely its gait time series resembles a pure harmonic, because
the phase can be more accurately estimated for a pure harmonic signal,
given the same spectral sampling rate. The corresponding quality in
the frequency domain is the sharpness of the power spectra around the
fundamental frequency, which we measure using the 2nd moment of the
power spectra about the fundamental frequency:

m2
i (Ω1) =

200∑
ω=1

|Xi(ω)|∑
ν |Xi(ν)| (ω − Ω1)2, (3.9)

where i = 1, . . . , 28, indicates the 28 features extracted from all 7 re-
gions of the silhouette. Because all gait image feature time series are
real numbers, the Fourier transform is symmetric, thus we only need to
compute the 2nd moment up to half of the frequency, i.e., 200 instead
of 400. The second moment about the peak frequency is computed for
each sequence in our gait data base and then averaged. The feature
with the smallest average m2

i (Ω1) is the feature whose phase is the
most accurately estimated overall and is used as the standard phase
from which all relative phases are computed. In our case, the phase
feature with the highest second moment about the fundamental fre-
quency is that of the x coordinate of the centroid of the front calf/foot
region. The sinusoidal purity of this component is apparent in Fig-
ures 3.1 and 3.4. The relative phase features preserve the coupling
between components of the walking silhouette. The gait fundamental
spectral decomposition feature vector has 57-1(the standard phase)=56
dimensions.

Because the fundamental harmonic features are composed of three
types, the fundamental period along with the magnitude and phase of
the fundamental frequency, the distance between two gait sequences is
not a simple Euclidean distance. The fundamental period and the mag-
nitude both reside in Euclidean space, hence the Euclidean distances
can be used. However, the phase difference between sequences, s and
t, of feature i is measured in angular distance:

d2
φ1,i(s, t) = min(|φ1|, |φ1 + 2π|, |φ1 − 2π|)2, (3.10)

where
φ1 = phase(Xi,s(Ω1(s)) − phase(Xi,t(Ω1(t)). (3.11)

Thus, the overall distance between two gait sequences is taken to be
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the sum of the Euclidean and the angular distance, i.e.,

d2
1(s, t) =

(
1

Ω1(s)
− 1

Ω1(t)

)2

+
∑

i

(|Xi,s(Ω1(s))| − |Xi,t(Ω1(t))|)2

+
∑

i

d2
φ1,i(s, t). (3.12)

3.4.2 The Second Harmonic

While the fundamental harmonic components capture the majority of
the information of the time series of the 28 features extracted from gait
silhouettes, they do not capture the subtle variations in the dynamics
of different features. Higher harmonics are needed to capture these
variations. Intuitively, the magnitude of the fundamental frequency
together with the magnitude of the second harmonic and the phase of
the second harmonic relative to the fundamental frequency provide a
translation independent description of a signal that contains only first
and second harmonics. We do not look beyond the second harmonic
because the sampling rate and the amount of noise in the gait silhouette
makes higher harmonic components unstable.

A visual inspection of clinical gait analysis data shows clearly that
most time series of gait parameters are not pure sinusoids. Figure 3.61

shows an example of the knee joint angle time series of one full stride
gait cycle as measured by tracking markers on the joints of a walking
subject. The thick dotted band which is the reference knee joint angle
for the general population with normal gait clearly shows that the time
series of the knee angle contains higher harmonics, at least the second
and the third harmonics.

While our silhouette representation cannot capture the amount of
detail that is available from a joint angle time series in clinical gait
analysis, it is highly likely that the higher harmonics are still present
in gait silhouette images. However, it is much less clear if the higher
harmonics, in particular the second harmonic, can be easily recovered
from the time series of image features which were themselves derived
from noisy silhouettes. Therefore, it is questionable whether the second
harmonic component that we recover is a meaningful description of
gait signature or not. We will answer this question in the next chapter
through recognition results.

1This example was downloaded from the Clinical Gait Analysis web site at Curtin
University of Technology, Australia, http://guardian.curtin.edu.au/cga/index.html
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Figure 3.6: An example of knee flex-extension angle in a gait cycle.
The thin lines are for the left and right knees of one subject, the dotted
band is the range of knee angle time series for the general population
with normal gait.
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Based on the fundamental frequency computed using the algorithm
given in the previous section, the second harmonic is assumed to be
at double the frequency of the fundamental frequency, i.e., Ω2 = 2Ω1,
even though the local peak may not actually be at that frequency. In
most cases, the local peak in the range of the second harmonic occurs in
the range (+1,−1) relative to our assumed second harmonic frequency.
The magnitude is easily computed, while the relative phase of the sec-
ond harmonic is measured relative to the phase of the fundamental
harmonic as follows:

φ2 = phase(Xi(Ω2)) − 2 × phase(Xi(Ω1)). (3.13)

The distance between two sequences is computed in the the same way
as in the case of the fundamental harmonic, except without the funda-
mental period component.

3.5 Direct Sequence Comparison by Dy-

namic Time Warping

As a baseline comparison to the gait sequence representations discussed
in the previous sections which do contain varying amounts of time ag-
gregation, we compared two sequences directly, without any time ag-
gregation. We choose to use dynamic time warping, which is a method
developed in speech recognition [36]. In particular, dynamic time warp-
ing (DTW) uses dynamic programming to compare two speech signals
which may be uttered at different speeds. Its use in comparing gait
image feature time series is appropriate because subjects often vary
slightly their walking speed. The details of dynamic time warping are
explained in Appendix A.

We use a version of DTW that tries to match two entire sequences
(versus piece-wise matching). The gait image feature time series are
preprocessed to extract lengths of sub-sequences that are integral mul-
tiples of the fundamental periods. These subsequences are aligned in
phase based on the phase of the feature with the strongest sinusoidal
signal. The fundamental period, p1, was computed in harmonic decom-
position. The feature with the purest sinusoidal signal—also derived
according to harmonic decomposition in the previous section—is the x
centroid of the front calf. We retrieve the phase of this time series and
locate the earliest point in time, t0, that corresponds to zero phase.
Then the subsequence from t0 to t0 + 5× p1 of all features of the given
gait sequence are taken as feature time series for comparison using time

43



warping. This method of segmenting subsequences for comparison us-
ing DTW reduces the possibility that the time series representations of
two gait video sequences are excessively penalized because they have
different number of periods. At the same time, the phase difference
between different features of the same gait video sequence is preserved
because the fundamental integral multiples start at the same phase
point of a fixed reference feature. Figure 3.7 shows two example time
series of the same silhouette feature but from two different gait video
sequences (a) in their original signal length and starting point, (b) after
they have been cut to integer multiples of the period and aligned at a
reference phase, and (c) after the dynamic time warping. The phase
alignment in the second stage is not perfect because phase estimation
is noisy.

Comparisons are made between two gait sequences, on a feature-by-
feature basis, i.e., the comparisons between two gait sequences s and t
are,

dtw(s1, t1)
...

dtw(si, ti)
...

dtw(s28, t28),

where i is the feature index. We again use the four ellipse parameters
of the seven silhouette regions, requiring matching 28 feature sequences
for each gait video sequence.

Dynamic time warping produces a warping cost for the pair of
sequences being compared. The distance between two gait video se-
quences compared using dynamic time warping is taken to be the sum
of the warping costs of the 28 pairs of feature sequences.
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Figure 3.7: Examples of two feature time series (a) in their original
length and starting point, (b) after they have been phase-aligned and
cut to integer multiples of fundamental period to become DTW input,
and (c) after dynamic time warping.
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sequence feature type appearance-related time-related

average appearance means and standard none
deviations of image
features

histogram appearance histogram of image none
features

harmonic components magnitude of Fourier fundamental period
components and relative phases

original time series retains all information retains all information

Table 3.1: The four types of gait sequence features.

3.6 Summary of Aggregation Methods

We have introduced in this chapter four types of gait sequence features
that result from different time-aggregations of the time series of gait
image features, as summarized in Table 3.1. The average appearance
feature discards the time dimension and uses the coarsest model to
describe the underlying distribution of the image features: the means
and the standard deviations. The appearance histogram feature also
discards the time dimension, but it is a much more accurate model of
the underlying distribution of the image features. The fundamental
harmonic features capture the magnitude of change for each image
feature, and it retains some time information, the fundamental period
and the relative phases of the different features. The addition of the
second harmonic features to the fundamental harmonic features gives
a more precise description of the path traversed by each image feature
in time. The baseline gait sequence feature retains all information
available from the image features and directly matches the time series
using dynamic time warping.

3.7 Feature Selection

Some of the features we have described have large dimensions, in par-
ticular the average appearance features and the harmonic features. It is
likely the case that some of the features are more significant for recog-
nition or gender classification purposes than other features. Ideally we
would like to find an entire set of features that are best for identifica-
tion or gender classification purposes. One method to test if a set of
features is significant for gender classification or person recognition is
to use analysis of variance (ANOVA). ANOVA is a standard technique
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Figure 3.8: The x coordinate of head region centroid for men and
women.

for measuring the statistical significance of a set of independent vari-
ables in predicting a dependent variable. For a detailed treatment, see
Statistical Inference by Casella and Berger [6].

ANOVA takes a single feature and the classes associated with the
data samples and measures the significance of the class variables in
predicting the means of the feature. The measure that ANOVA pro-
duces is the p-value for the feature set and the class variable. We will
illustrate the intuition behind using the p-value for purpose of the fea-
ture selection with a concrete and simple example. We then apply the
test to all features, making the simplifying assumption that individual
features are independent.

We consider the problem of deciding whether a particular feature,
such as the x centroid of the head region, is useful for discriminating
between genders. Figure 3.8 shows the x centroid of head region for
men and women. The p-value of ANOVA corresponds to the intuitive
notion of how unlikely it is to see the two sets of data from men and
women if the x coordinate of the head region centroid of both men
and women are drawn from the same Gaussian distribution. In this
particular case, the p-value is numerically indistinguishable from zero,
so we conclude that the feature is useful in discriminating between men
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and women.
In general, ANOVA allocates the variations of a data set to different

sources, which in our case includes either the gender of a subject or the
identity of a subject. The total variation is broken into the variation
between classes and the variation within classes. The variation within
a class is considered random error. The variations between classes are
generally not random because these are systematic variations between
the genders or between individuals. The ratio of the between class
variation to the within class variation is the F statistic. The p-value is
the probability of observing an F statistic of this magnitude or bigger
assuming that the samples for different classes are all drawn from the
same Gaussian distribution.

We use the heuristic that if a feature set has a low probability of
being drawn from one Gaussian distribution, then this feature set is in-
dicative of the underlying classes. Hence a small p value is an indication
of the significance of a feature set for classification or recognition.

To find an entire set of features that are the most significant for
recognition or gender classification, one needs to test the significance
of all subsets of the features because there may be dependence between
different features. The combinatorics makes this a computationally
very intensive problem. We again resort to a heuristic method. Mak-
ing the simplifying assumption that each feature is independent of other
features, we could then test for the significance of each feature dimen-
sion individually. The best set is assumed to consist of the top few of
the individually tested features.

While the ANOVA is suitable for feature sets such as the average
appearance and the harmonic components features, it is not obvious
how one applies a similar scheme to the appearance histograms and the
directly matched sequences. In the case of the appearance histogram,
we simply select the feature components by their properties, such as
choosing only the centroid-related features or only the orientations,
and test the recognition performance using the selected features. We
do not use any feature selection on the original sequence. Hence DTW
is done with the entire sequence without any ranking or deletion of the
features.
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Chapter 4

Recognition
Experiments

Here we apply the four gait features described in the previous chap-
ter: (1) the averaged appearance, (2) the appearance histogram, (3) the
fundamental and the second harmonic components, and (4) direct com-
parison of gait image feature time series using dynamic time warping,
to the task of recognizing people by video sequences of their walking
gait. Our goal is to test the performance of each set of features under
different circumstances.

4.1 The Data

We gathered gait data in indoor environments with different back-
grounds, on four separate days spanning two months. Two examples
of the indoor backgrounds are shown in Figure 4.1. The weather con-
ditions outdoors span from the middle of winter to an unusually hot
early spring day, resulting in our subjects wearing clothing ranging
from sweaters and long pants to t-shirts, shorts and skirts during the
data collection sessions on different days. Moreover, our indoor envi-
ronment has overhead fluorescent lighting, which cast harsh shadows
on the ground when subjects walk under them. Twenty-four subjects,
10 women and 14 men, were asked to walk at their normal speed and
stride, back and forth, twice in front of a video camera that was placed
perpendicular to their walking path. Because one direction of walk
was predefined as the standard walking direction, the walking gait se-
quences going the opposite direction were modified to produce a walk-
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ing sequence in the standard direction. This is achieved by reflecting
about the y axis the individual frames of the opposite direction walking
sequence. In all, 194 walking sequences were collected, between 4 to 22
sequences for each subject, averaging 8 sequences per subject. A min-
imum of 3 complete walking cycles were captured, where a complete
cycle takes two steps, left-right, or right-left. The videos were recorded
using a Sony Digital Handycam VX2000 using the non-interlaced mode,
resulting in videos of 720 by 480 pixels at 15 frames per second. We
fixed focus and gain control to remove the flicker that may result from
auto focus and auto gain control. The camera was positioned at a
height of roughly 4.5 feet with the optical axis roughly parallel to the
ground plane.

To obtain the silhouette of the walking subjects, we use an adap-
tive background subtraction algorithm [40] to segment out the walking
person as a moving foreground object and scale-normalized it to fit in
a 128× 128 pixel binary image. An example of the foreground walking
person is shown in Figure 4.2. Note that the foreground segmentation is
not perfect: shadows on the ground and in some cases portions of the
background are included. However, our gait representation tolerates
this amount of noise in the foreground segmentation.

4.2 The Recognition Experiments

The most obvious test that can be performed is a simple pair-wise com-
parison of all sequences to all sequences. Specifically, each sequence in
the gait database is treated as a query (or a probe) and compared
against all other sequences in the database, which we call the library
(or the gallery). Our gait database has the unique characteristic that
subjects were filmed on different days; hence they were wearing differ-
ent clothing, had different hair styles, and might have been in different
emotional states at the time of data collection. These differences—in
particular, clothing and hair style change—cause significant changes
in the appearance of the gait silhouettes that are not present in gait
video sequences collected on the same day. Figure 4.3 shows example
silhouettes of one subject taken on three different days. Because of the
difficulties in measuring one’s emotional state, we make the simplify-
ing assumption that it does not seriously affect one’s gait under most
normal circumstances.

We can exploit the uniqueness of our gait database to test the sen-
sitivity of a gait representation to changes in appearance of the sil-
houettes caused by static appearance changes of the subject, namely
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clothing, hair, and footwear changes, and to kinematic properties of
one’s gait which do not depend on external appearance changes. To
that end, we devised two different tests:

1. The any-day test, where each sequence of the gait database is
used as a query against the rest of the database, and

2. The cross-day tests, where gait sequences from one day are com-
pared against sequences taken on other days.

The any-day test is a baseline experiment to examine the capability of
a gait representation to capture any informative qualities of a subject’s
gait. The cross-day test examines the sensitivity of a gait representation
to changes in the appearance of a person, such as the changes in clothing
and hair style. Given that we have data collected on four different days,
there are four sets of cross-day recognition tests, as listed in Table 4.1.

Cross-day tests Query sequences Library Sequences
xdayA from day A from days B, C, D
xdayB from day B from days A, C, D
xdayC from day C from days A, B, D
xdayD from day D from days A, B, C

Table 4.1: Definitions of the four sets of cross-day recognition tests.

For the remainder of this chapter, the gait representations described
in the previous chapter are applied in recognition tests having the fol-
lowing components:

• A probe is a video sequence of one subject walking and its equiv-
alent gait sequence feature representations.

• The library (or gallery) contains representations of individual gait
sequences (instead of models of each subject) with a subject iden-
tity associated to each sequence representation. A subject has
multiple instances represented in the library.

• A probe is correctly identified (at the kth retrieval) if, after rank-
ing the library sequences by their distance/similarity to the probe,
the kth ranked representation is the closest one to have the same
subject identity as that of the probe sequence, regardless of which
particular instance of the subject in the library is retrieved as the
kth ranked match.

51



The classification method used is a nearest neighbor approach.

4.3 The Performance Measure

Given the five recognition tests described in the previous section, we
need a performance measure to examine the effectiveness of our gait
representations in each of the tests. To that end, we employ a standard
measure used in the face recognition community, the cumulative match
score (CMS), described in [32]. The CMS is a measure of the rate
of correct identification as one increases the retrieval rate. We will
describe in detail the formulation of the CMS curve. In addition, we
provide a baseline comparison CMS produced using a random retrieval
algorithm.

4.3.1 Cumulative Match Score

The cumulative match score answers the question “Is the correct an-
swer in the top k matches?” It is used in a closed-universe model for
recognition, meaning that the correct answer is always in the library.
Given a probe gait sequence, the sequences in the library are ranked
according to their similarity (or distance) to the probe. Let P be the
number of probes to be scored, and Rk be the number of these probes
correctly identified within the top k matches, the fraction of correct
identification, or the CMS, is

CMS(k) =
Rk

P . (4.1)

In the case of the cross-day tests, the probe sequences are a subset
of all the sequences taken on one day whose corresponding walking sub-
jects are represented in at least one other day. This paring-down of the
probe set is necessary to comply with the restriction of a closed-universe
recognition task. The cross-day test library contains all sequences col-
lected on other days. In the case of the any-day test, each probe has its
own library/gallery, which is the the rest of the gait database, and the
cumulative match score is averaged over all probes and all libraries.

4.3.2 Comparison Basis: Random Retrieval

In order to measure the effectiveness of a gait representation for the
purpose of recognizing individuals, one needs to know the performance
of a completely ineffective algorithm: one that randomly ranks the
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sequences in a library. The performance of such an algorithm depends
on the number of instances of a probe that are present in the library.

Let N be the number of sequences in the library, and let mb be the
number of instances in the library of a subject with the same identity
as that of probe b. The probability that probe b is correctly identify
by the kth retrieval using a random-retrieval algorithm is,

P (k, b) = 1 −

(
N − mb

k

)
(

N
k

) (4.2)

i.e., one minus the probability that the probe is not correctly identified
by the kth retrieval. The theoretical average CMS of the random-
retrieval algorithm is thus,

CMS(k) =
1
P

∑
b

P (k, b) (4.3)

where P is the number of probes. Figure 4.4 shows the CMS curves for
the five recognition tests using the random retrieval algorithm. Table
4.2 shows the CMS in text format for easier comparison to recognition
results achieved using our gait representations.

1st 5 % 10% 20% 30% 40% 50%
any-day 5 39 59 81 90 94 97
xdayA 5 32 54 76 88 94 97
xdayB 5 35 57 81 91 96 98
xdayC 5 34 53 77 89 95 98
xdayD 5 31 52 76 87 94 97

Table 4.2: The percentage of correct identification at the given per-
centage of recall using random retrieval.
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(a)

(b)

Figure 4.1: Examples of indoor background for gait data collection.
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(a) t=1 (b) t=2 (c) t=3 (d) t=4

(e) t=5 (f) t=6 (g) t=7 (h) t=8

Figure 4.2: A sample sequence of the silhouettes of a subject after
background subtraction.

(a) hair up,
wearing pants

(b) hair
down, dress
and tights

(c) hair in
pony tail,
pants

Figure 4.3: Silhouette of one walking subject from video sequences
taken on three different days, with three different hair styles and two
different types of clothing.
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(c) xdayB recognition test
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(d) xdayC recognition test

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Cumulative match score of xdayD test  using a random retrieval algorithm

Rank (144 gallery sequences)

C
M

S

(e) xdayD recognition test

Figure 4.4: Theoretical average cumulative match score curves of five
recognition tests using a random-retrieval algorithm for recognition.
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4.4 The Recognition Results

The recognition results using each of the gait representations described
in the previous chapter are presented below. To review, the four gait
sequence representations are: (1) average appearance, (2) histogram
appearance, (3) harmonic components, and (4) the original feature time
series. Each is tested in several variations using different sets of weights
on the components of the gait sequence features. The goal of these tests
is to explore the capacity of these features to capture information which
is significant in the five recognition tests described previously as well as
to test the sensitivity of each feature to the changes in the appearance
of the silhouettes caused by clothing changes.

4.4.1 Average Appearance

The average appearance gait feature vector is used in the five recog-
nition tests with the following eight variations in the weights for each
component k:

1. Equally weighted full set: Wk = 1 for all k.

2. ANOVA threshold: Wk = 1 if ANOVA results in p < 10−9,
otherwise Wk = 0. There are 41 average appearance feature
components that pass this threshold.

3. ANOVA weighted: Wk = min(2,− log10(pk)/9), i.e., each com-
ponent is weighted in proportion to the log of the reciprocal of
the ANOVA p-value.

4. Centroid: Wk = 1 if feature component k is the mean or the
standard deviation of the centroid of a region, and 0 otherwise.

5. Orientation: Wk = 1 if feature component k is the mean or the
standard deviation of the orientation of a region, and 0 otherwise.

6. Elongation: Wk = 1 if feature component k is the mean or the
standard deviation of the elongation of a region, and 0 otherwise.

7. Mean components: Wk = 1 if feature component k is the mean
of any region, any ellipse parameter.

8. Standard deviations: Wk = 1 if feature component k is the stan-
dard deviation of any region, any ellipse parameter.
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In variation 3, the weights based on ANOVA p value are designed so
that a component feature is weighted 1 or larger if its corresponding
ANOVA p value passes the threshold of p < 10−9, and less than 1
if it is larger. The recognition performances of all eight variations
of the average appearance measures are listed in Tables 4.3 and 4.4;
representative examples are shown in Figure 4.5.

any-day 1st 5% 10% 20% 30% 40% 50%
equally weighted full set 97 100 100 100 100 100 100
ANOVA threshold 100 100 100 100 100 100 100
ANOVA weighted 99 100 100 100 100 100 100
centroid 90 100 100 100 100 100 100
orientation 84 99 99 100 100 100 100
elongation 84 99 100 100 100 100 100
mean components 99 100 100 100 100 100 100
standard deviations 79 98 100 100 100 100 100

Table 4.3: Any-day recognition results using variations of average ap-
pearance gait features.

While the recognition rates of the any-day test appear impressive,
closer examination shows that for the majority of the variations, the
closest correct match for 97% to 98% of the probes is another sequence
of the same subject collected on the same day. The exceptions are
the orientation and the elongation variations with 94% and 92%, re-
spectively, of the probes identified to another sequence of the subject
collected on the same day. This indicates that the average appearance is
highly sensitive to the changes in clothing style and background. More-
over, most of the correct matches in the library were of people walking
in the same direction as in the probe sequence. We believe this bias is
caused by the shadows on the ground casted by ceiling lights. Because
we decided that all images of walking subjects should be from the same
side of view, the walking sequences collected from the opposite views
are reflected about the y axis to make the data set uniform. However,
while the silhouettes of the walking figure are symmetric when viewed
from the left or right side provided the subject has a symmetric walk,
the shadows on the ground do not have the same property, making the
left side view of the walking subject significantly different from the right
side view. Hence there is a need to test the recognition performance
of the features using probe and gallery sequences that are collected on
different days where there is a larger variation on the clothing styles of

58



0 5 10 15 20 25 30 35 40 45 50
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
CMS of any−day test using average appearance features

Rank (top 50 of 193 gallery sequences)

C
M

S
, 1

94
 p

ro
be

 s
eq

ue
nc

es

equal weight
ANOVA weighted
std features
random

(a) any-day recognition test

0 10 20 30 40 50 60 70 80 90 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
CMS of xdayA test using average appearance features

Rank (top100 of 146 gallery sequences)

C
M

S
, 3

2 
pr

ob
e 

se
qu

en
ce

s

equal weight
ANOVA weighted
std features
random

(b) xdayA recognition test
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(c) xdayB recognition test
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(d) xdayC recognition test
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(e) xdayD recognition test

Figure 4.5: The cumulative match score curves of five recognition tests
using the Euclidean distance between average appearance features.
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the subjects and the backgrounds, including lighting variations.
The overall performance over the five recognition tests appear to

favor the two variations of the ANOVA related weights, either the log-
weighted or the thresholding of p-values. The ANOVA thresholded
variation of the average appearance is slightly preferred because it uses
fewer feature vector components. Most of the mean components of
the average appearance features have small ANOVA p-values, and the
overwhelming majority of the features that pass the threshold set on
ANOVA p-values are the mean features. Hence, it is not very surprising
that the mean variation of the average appearance features also per-
formed well. All variations of the average appearance representations
appear to perform better in the xdayA test than the other cross-day
tests. Closer examinations of the ranked matches show that the worse
performances, compare to xdayA, in the cross-day B, C, and D tests
are the result of lack of similarity between the types of clothing that
some of the subjects wore for the day B, C, or D gait sequence data
and what they each wore on the other days. In other words, the query
sequences show subjects wearing clothing that is substantially different
from that in the library sequences. For example, the 7 query sequences
with the worst match scores from day B are all from one subject who
wore baggy pants and whose only representations in the library were
sequences collected on day D when he wore shorts. For the same rea-
son, recognition results of matching day D gait sequences against all
other sequences suffer because of lack of a similar appearance model in
day B for the same subject. Day C contains sequences of one subject
wearing a short dress while the only other sequences in the database
show her wearing pants. On the other hand, all the subjects recorded
on day A and that also appear on one other day wore similar clothing
on the other day(s).
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xdayA 1st 5% 10% 20% 30% 40% 50%
equally weighted full set 47 69 91 100 100 100 100
ANOVA threshold 44 78 94 100 100 100 100
ANOVA weighted 50 84 100 100 100 100 100
centroid 22 56 78 94 97 100 100
orientation 31 66 81 97 97 100 100
elongation 28 63 84 100 100 100 100
mean components 50 75 100 100 100 100 100
standard deviations 22 47 72 88 97 97 100
xdayB 1st 5% 10% 20% 30% 40% 50%
equally weighted full set 25 47 56 69 81 84 91
ANOVA threshold 47 50 53 88 100 100 100
ANOVA weighted 44 50 56 84 94 100 100
centroid 16 47 50 53 59 69 78
orientation 31 75 78 84 94 100 100
elongation 13 34 56 84 88 94 97
mean components 47 63 69 75 84 97 100
standard deviations 0 28 44 59 63 72 94
xdayC 1st 5% 10% 20% 30% 40% 50%
equally weighted full set 25 36 55 80 86 91 91
ANOVA threshold 30 43 55 75 82 89 95
ANOVA weighted 27 45 68 80 86 91 95
centroid 14 43 59 77 82 82 82
orientation 18 48 61 73 84 91 91
elongation 23 41 57 77 91 100 100
mean components 30 48 55 77 89 91 95
standard deviations 11 36 55 70 82 82 82
xdayD 1st 5% 10% 20% 30% 40% 50%
equally weighted full set 26 50 69 81 88 90 90
ANOVA threshold 38 55 64 83 88 90 90
ANOVA weighted 43 55 69 83 90 90 95
centroid 26 43 50 62 74 86 90
orientation 21 50 67 83 88 88 90
elongation 17 48 74 88 90 98 100
mean components 33 50 74 86 88 88 90
standard deviations 5 38 57 81 95 98 100

Table 4.4: Cross-day recognition results using variations of average
appearance gait features.
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4.4.2 Appearance Histogram

The following variations of the appearance histograms are examined:

1. All histograms: Wk = 1 for all histogram components.

2. Centroid: Wk = 1 for centroid-related histogram components, 0
otherwise.

3. Orientation: Wk = 1 for orientation-related histogram compo-
nents, 0 otherwise.

4. Elongation: Wk = 1 for elongation-related histogram compo-
nents, 0 otherwise.

The recognition performance on the five recognition tests are shown
in Figure 4.6 for a representative sample of the variations, and in Ta-
bles 4.5 and 4.6 for the complete set of histogram feature variations.

any-day 1st 5% 10% 20% 30% 40% 50%
all 29 histograms 100 100 100 100 100 00 100
centroid 97 100 100 100 100 100 100
orientation 93 99 100 100 100 100 100
elongation 95 99 100 100 100 100 100

Table 4.5: Any-day recognition results using variations of histogram
appearance gait features.

The recognition results based on the percentage of recall in Ta-
ble 4.5 through Table 4.6 show that the appearance histogram of ori-
entation components performs consistently better than the full set of
57-dimensional averaged appearance features and is better than the
ANOVA thresholded 41-dimensional averaged appearance features be-
yond the 5% recall level. We conclude that the mean and standard
deviations of averaged appearance features do not adequately represent
the underlying distribution of gait image features, while a histogram
approximates the entire distribution. The histogram representation is
highly sensitive to changes in the appearance of the gait silhouettes
collected on different days. The recognition results on the any-day test
show that with the exception of orientation histogram, using the other
three histogram measures resulted in 98% of the probes having the
first correct match as another sequence of the same subject collected
on the same day. The orientation histogram had only 94% of the probes
matching to another sequence of the same subject collected on the same
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xdayA 1st 5% 10% 20% 30% 40% 50%
all 29 histograms 50 84 100 100 100 100 100
centroid 44 69 88 97 100 100 100
orientation 59 88 94 100 100 100 100
elongation 38 75 81 97 100 100 100
xdayB 1st 5% 10% 20% 30% 40% 50%
all 29 histograms 25 75 75 84 94 100 100
centroid 22 56 63 72 75 88 91
orientation 25 100 100 100 100 100 100
elongation 13 53 72 97 100 100 100
xdayC 1st 5% 10% 20% 30% 40% 50%
all 29 histograms 45 70 84 91 91 93 95
centroid 32 66 68 84 91 91 91
orientation 50 77 86 98 98 100 100
elongation 16 55 66 77 84 91 95
xdayD 1st 5% 10% 20% 30% 40% 50%
all 29 histograms 45 60 74 88 95 95 100
centroid 33 57 62 71 88 95 95
orientation 43 79 95 100 100 100 100
elongation 17 40 52 74 81 93 100

Table 4.6: Cross-day recognition results using variations of histogram
appearance gait features.

day, which explains why the orientation histogram performs better in
the cross-day recognition test.

63



0 5 10 15 20 25 30 35 40 45 50
0.5

0.6

0.7

0.8

0.9

1

1.1
CMS of any−day test using histogram appearance features

Rank (top 50 of 193 gallery sequences)

C
M

S
, 1

94
 p

ro
be

 s
eq

ue
nc

es

all 29 histograms
centroid only
orientation only
random

(a) any-day recognition test

0 10 20 30 40 50 60 70 80 90 100
0.5

0.6

0.7

0.8

0.9

1

1.1
CMS of xdayA test using histogram appearance features

Rank (top100 of 146 gallery sequences)

C
M

S
, 3

2 
pr

ob
e 

se
qu

en
ce

s

all 29 histograms
centroid only
orientation only
random
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Figure 4.6: The cumulative match score curves of five recognition tests
using histogram appearance features.
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4.4.3 Fundamental Harmonic Components

The following weight variations in the fundamental harmonic compo-
nents are examined:

1. Equally weighted: Wk = 1 for all feature components.

2. ANOVA threshold: Wk = 1 if ANOVA results in pk < 10−9,
otherwise Wk = 0. There are 32 fundamental harmonic feature
components that pass this threshold.

3. ANOVA weighted: Wk = min(2,− log10(pk)/9), i.e., each com-
ponent is weighted in proportion to the log of the reciprocal of
ANOVA p-value.

4. Fundamental period: Wk = 1 for the fundamental period only, 0
otherwise.

5. Magnitude: Wk = 1 for the magnitude of the fundamental fre-
quency of each feature, 0 otherwise.

6. Relative phase: Wk = 1 for the relative phase of the fundamental
frequency of each feature, 0 otherwise.

Representative examples of recognition performances are show in Fig-
ure 4.7 and the complete set of results in Tables 4.7 and 4.8.

any-day 1st 5% 10% 20% 30% 40% 50%
fundamental period 23 80 96 99 100 100 100
magnitude 80 98 99 99 100 100 100
relative phase 52 88 96 100 100 100 100
equal weight
1st harmonic, 84 99 99 100 100 100 100
1st harmonic, 89 99 100 100 100 100 100
ANOVA threshold
1st harmonic, 89 99 99 100 100 100 100
ANOVA weighted

Table 4.7: Any-day recognition results using variations of fundamental
harmonic gait features.
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(b) xdayA recognition test

0 10 20 30 40 50 60 70 80 90 100
0.5

0.6

0.7

0.8

0.9

1

1.1
CMS of xdayB test using fundamental harmonic features

Rank (top100 of 162 gallery sequences)

C
M

S
, 3

2 
pr

ob
e 

se
qu

en
ce

s

equal weight, all features
ANOVA weighted
relative phase only
random

(c) xdayB recognition test
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(d) xdayC recognition test
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Figure 4.7: The cumulative match score curves of five recognition tests
using fundamental harmonic features.
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xdayA 1st 5% 10% 20% 30% 40% 50%
fundamental period 9 44 47 72 84 84 100
magnitude 41 84 91 100 100 100 100
relative phase 22 75 88 94 97 97 100
1st harmonic, 41 84 91 100 100 100 100
equal weight
1st harmonic, 50 88 94 97 100 100 100
ANOVA threshold
1st harmonic, 44 81 94 97 100 100 100
ANOVA weighted
xdayB 1st 5% 10% 20% 30% 40% 50%
fundamental period 19 44 66 75 88 91 100
magnitude 28 69 78 88 94 100 100
relative phase 16 59 78 94 97 100 100
1st harmonic, 41 69 88 91 97 100 100
equal weight
1st harmonic, 50 72 75 88 94 97 100
ANOVA threshold
1st harmonic, 50 72 78 94 94 100 100
ANOVA weighted
xdayC 1st 5% 10% 20% 30% 40% 50%
fundamental period 27 52 68 93 95 100 100
magnitude 30 70 84 95 95 100 100
relative phase 36 59 75 84 93 95 98
1st harmonic, 36 80 86 95 98 100 100
equal weight
1st harmonic, 45 75 82 93 93 100 100
ANOVA threshold
1st harmonic, 41 73 84 93 95 100 100
ANOVA weighted
xdayD 1st 5% 10% 20% 30% 40% 50%
fundamental period 14 36 81 90 98 98 98
magnitude 14 67 83 95 95 98 100
relative phase 21 62 90 98 98 98 98
1st harmonic, 24 69 86 95 98 100 100
equal weight
1st harmonic, 40 81 95 98 100 100 100
ANOVA threshold
1st harmonic, 43 71 90 95 98 100 100
ANOVA weighted

Table 4.8: Cross-day recognition results using variations of fundamental
harmonic gait features.
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As is evident in the recognition results, the fundamental harmonic
decomposition features do not perform as well as the average appear-
ance features or the appearance histogram features in the any-day test;
on the other hand, they perform much better than do the average
appearance features and are comparable in performance to the appear-
ance histogram features in the cross-day tests. The two ANOVA-related
variations of the fundamental harmonic components showed the best
recognition performances overall, followed by equally weighting the full
set of harmonic features. The ANOVA threshold variation is again pre-
ferred because of its smaller set of feature components. Approximately
2/3 of the fundamental harmonic features that pass under the ANOVA
p value threshold of 10−9 are magnitudes of fundamental frequency,
and the other 1/3 are the relative phases. The fundamental period also
passes the threshold, which suggests that while we intuitively believe
people may vary their walking speed, their walking speeds are actually
more consistent than we (at least this author) believed. The funda-
mental harmonic features are less sensitive to silhouette appearance
variations in the same subject from gait data collected on different
days than both the average appearance features and the appearance
histograms. This is quantified by the fraction of the closest correct
retrievals that are sequences from the same day in the any-day test as
tabulated below:

fundamental harmonic % of probes with closest correct
feature variation match from the same day
fundamental period 76
magnitudes 91
relative phase 74
equal weight, all features 92
ANOVA threshold 94
ANOVA -log weighted 95
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4.4.4 First and Second Harmonic Components

The following weight variations are examined in the fundamental and
the second harmonic components:

1. Wk = 1 for magnitude of the second frequency of each feature,
and 0 otherwise.

2. Wk = 1 for phase of the second harmonic relative to the first
harmonic of each feature, and 0 otherwise.

3. Wk = 1 for all second harmonic feature components.

4. Wk = 1 if ANOVA results in p < 10−9 of the second harmonic fea-
tures, otherwise Wk = 0. There are 11 second harmonic feature
components that pass this threshold.

5. Wk = min(− log10(pk)/10, 2) for all second harmonic compo-
nents, i.e., each component is weighted by the log of the ANOVA
p-value.

6. Wk = 1 for all first and second harmonic features.

7. Wk = 1 if ANOVA results in p < 10−9 of the first and the second
harmonic features, otherwise Wk = 0. There are 43 first and
second harmonic feature components that pass this threshold.

8. Wk = min(2,− log10(pk)/10) for all first and second harmonic
components, i.e., each component is weighted by the log of the
ANOVA p-value.

Recognition performances are shown in Figure 4.8 and in Tables 4.9
and 4.10.

The recognition performance shows that the second harmonic com-
ponents alone are not good features for the recognition tests. Com-
bining the first and second harmonic components performs better than
using only the second harmonic. However, there is not a clear ad-
vantage to combining the first and second harmonic components over
using only the first harmonic components. This may be an indication
that the amount of noise in the time series of gait image features may
be too high for accurate estimation of the second harmonic compo-
nents. The second harmonic components alone are not very sensitive
to clothing changes resulting from data collected from different days.
Approximately 70% of the probes were identified with a sequence of
the same subject collected on the same day. The combined first and
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any-day 1st 5% 10% 20% 30% 40% 50%

magnitude, 2nd harmonic 40 82 91 97 99 99 100

relative phase, 2nd harmonic 28 79 87 93 97 100 100

2nd harmonic, equally weighted 42 85 92 98 99 100 100

2nd harmonic, ANOVA threshold 39 88 94 98 99 100 100

2nd harmonic, ANOVA weighted 52 90 96 99 100 100 100

1st & 2nd harmonic, equally weighted 77 99 100 100 100 100 100

1st & 2nd harmonic, ANOVA threshold 87 100 100 100 100 100 100

1st & 2nd harmonic, ANOVA weighted 90 99 99 100 100 100 100

Table 4.9: Any-day recognition results using variations of fundamental
and second harmonic gait features.

second harmonic features are much more sensitive to silhouette appear-
ance changes resulting from changes of clothing on different days: over
90% of the probes are identified with another sequence of the same
subject on the same day.
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(c) xdayB recognition test
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(d) xdayC recognition test
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Figure 4.8: The cumulative match score curves of five recognition tests
using fundamental and second harmonic features.
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xdayA 1st 5% 10% 20% 30% 40% 50%

magnitude, 2nd harmonic 6 56 84 100 100 100 100

relative phase, 2nd harmonic 25 66 84 84 91 97 97

2nd harmonic, equally weighted 6 66 88 100 100 100 100

2nd harmonic, ANOVA threshold 25 66 91 97 100 100 100

2nd harmonic, ANOVA weighted 28 75 91 100 100 100 100

1st & 2nd harmonic, equally weighted 31 91 97 100 100 100 100

1st & 2nd harmonic, ANOVA threshold 53 88 97 100 100 100 100

1st & 2nd harmonic, ANOVA weighted 50 91 94 100 100 100 100

xdayB 1st 5% 10% 20% 30% 40% 50%

magnitude, 2nd harmonic 9 41 59 78 91 97 100

relative phase, 2nd harmonic 9 47 69 84 97 100 100

2nd harmonic, equally weighted 9 41 59 78 91 94 100

2nd harmonic, ANOVA threshold 19 53 59 78 94 100 100

2nd harmonic, ANOVA weighted 19 50 59 75 81 91 94

1st & 2nd harmonic, equally weighted 41 56 72 81 94 100 100

1st & 2nd harmonic, ANOVA threshold 44 56 72 84 94 97 100

1st & 2nd harmonic, ANOVA weighted 41 63 78 84 94 100 100

xdayC 1st 5% 10% 20% 30% 40% 50%

magnitude, 2nd harmonic 11 59 75 91 98 100 100

relative phase, 2nd harmonic 25 59 70 80 86 93 98

2nd harmonic, equally weighted 16 64 75 95 98 100 100

2nd harmonic, ANOVA threshold 11 61 70 89 91 93 95

2nd harmonic, ANOVA weighted 20 64 75 86 91 93 93

1st & 2nd harmonic, equally weighted 34 77 86 95 100 100 100

1st & 2nd harmonic, ANOVA threshold 36 73 80 89 95 98 100

1st & 2nd harmonic, ANOVA weighted 41 75 77 89 98 100 100

xdayD 1st 5% 10% 20% 30% 40% 50%

magnitude, 2nd harmonic 19 52 83 98 98 100 100

relative phase, 2nd harmonic 10 69 88 90 100 100 100

2nd harmonic, equally weighted 26 57 81 95 98 100 100

2nd harmonic, ANOVA threshold 17 71 88 95 100 100 100

2nd harmonic, ANOVA weighted 21 64 81 93 95 95 95

1st & 2nd harmonic, equally weighted 26 74 93 98 100 100 100

1st & 2nd harmonic, ANOVA threshold 43 90 93 95 100 100 100

1st & 2nd harmonic, ANOVA weighted 52 76 88 95 95 100 100

Table 4.10: Cross-day recognition results using variations of fundamen-
tal and second harmonic gait features.
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4.4.5 Direct Comparison of Time Series

The recognition performance of using dynamic time warping (DTW) to
directly compare gait image feature time series is shown in Figure 4.9
and in Table 4.11.

1st 5% 10% 20% 30% 40% 50%
any-day 57 92 95 99 99 100 100
xdayA 16 53 88 97 100 100 100
xdayB 13 50 59 91 100 100 100
xdayC 11 43 61 82 98 100 100
xdayD 17 50 60 81 90 100 100

Table 4.11: Dynamic time warping recognition results.

Direct sequence comparison using dynamic time warping is the most
computationally intensive of all gait feature comparison methods stud-
ied in this thesis. While the recognition performance using DTW on
the any-day test is significantly worse than most time-aggregated gait
features, the cross-day tests showed results that are not significantly
worse. Direct comparison of time series is relatively insensitive to cloth-
ing change between data collected on different days: approximately 90%
of the probes are identified to sequences of the same subject collected
on the same day.
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(a) any-day recognition test
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(b) xdayA recognition test
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(c) xdayB recognition test
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(d) xdayC recognition test
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(e) xdayD recognition test

Figure 4.9: The cumulative match score curves of five recognition tests
using dynamic time warping to directly compare feature sequences.
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4.5 Discussion of Recognition Results

Based on the set of recognition experiments conducted using the four
different types of features, we come to the following conclusions:

• The average appearance feature is extremely simple and efficient
to compute, but it is not able to provide a detailed enough de-
scription of the distribution of the gait image features. It is highly
sensitive to clothing changes resulting from data collected on dif-
ferent days.

• The fundamental harmonic features are less sensitive to clothing
changes, hence they have better performance on the cross-day
recognition tests. The addition of the second harmonic features
does not contribute significantly to the recognition performance.
It is possible that the amount of noise in the time series precludes
the accurate estimation of the second harmonic components.

• The histogram appearance features are sensitive to the silhouette
appearance changes resulting from different days of gait data col-
lection. However, it still performs well in the cross-day recogni-
tion test.

• The direct comparison of time series using dynamic time warping
preserves the most amount of time information and is the most
computationally intensive method. It consistently performs bet-
ter than the random retrieval method, though by relatively small
amounts in the cross-day tests.

The recognition results of the best performing variation of each aggre-
gation method are displayed in Figure 4.10.

The extreme sensitivity to clothing and background changes of the
average appearance feature makes it not the ideal feature set for recog-
nizing walking subjects collected on different days when they may be
wearing different clothing. However, we might be able to exploit this
sensitivity to detect the clothing model for the walking subject, such as
pants vs. shorts vs. skirt, if environmental effects such as shadows could
be reduced. In addition, we found that our heuristic method for feature
selection—that is, assuming independence of features and using analy-
sis of variance to select for features that highly violate the single Gaus-
sian distribution assumption—not only reduced the dimensionality of
the average appearance feature set, but also improved performance.

The recognition results using the fundamental harmonic compo-
nents showed good performance in the cross-day recognition tests. This
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Figure 4.10: Cumulative match score for the best performing variation
of each aggregation method. The four cross-day tests are combined to
show percentage of recall.
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is consistent with our intuition. Changes in the clothing and hair styles
of a subject that occur in multi-day gait data collection causes an over-
all change in the appearance of the silhouettes. We constructed the
fundamental harmonic features by eliminating the means of all image
features, hence the resulting harmonic feature only contains the change
in each feature over a walking sequence, which is much less sensitive
to an overall appearance change. Feature selection using our heuristic
method based on the p-value of ANOVA reduced the number of funda-
mental harmonic features from 56 to 31 without adversely affecting the
recognition results. We also used the second harmonic components in
addition to the fundamental harmonic components. While our recogni-
tion results do not support a case for using the second harmonic com-
ponents for person recognition, we highly suspect that this is caused
by the amount of noise in the time series compounded by the low sam-
pling rate in time rather than the lack of second harmonic component
features as a biometric feature. Preliminary results by Carter et al. [5]
showed that the higher harmonic component features were not only
present in the silhouette, but that they were useful for identification
purposes. They were using video captured at 50 frames per second in
addition to having a high resolution view of the walking subject and
the chroma-keyed background to produce high quality walking figure
silhouettes. They were able to extract not only the second harmonic,
but the third, fourth, and even the fifth harmonic components.

Of the four variations of histogram appearance features that we
had experimented with, the orientation histogram has the best per-
formance in the cross day recognition tests. This is consistent with
our intuitive understanding. The histogram appearance features have
roughly the same performance as fundamental harmonic features in the
cross-day tests and the best performance in the any-day test. An ideal
gait appearance representation should behave in such a way that it is
sensitive to the consistency of appearance of data collected on the same
day, but not so sensitive that the appearances are over-modeled and
appearance-independent gait features are compromised. Hence we con-
clude that the orientation histogram of gait sequence feature is the best
set of the four considered. In addition, we hypothesize that recognition
performance could be improved by augmenting the histogram appear-
ance features with other features that are not present in the histogram.
Namely, the fundamental harmonic features contain information about
relative phases and the fundamental period, which are independent of
any feature in the histogram appearance representation.
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4.6 Better Features for Person Recognition

The histogram of orientation of ellipses in each region is chosen be-
cause it is the most compact and the best performing feature of the
histogram feature set. The following variations of combining the orien-
tation histogram representation and the fundamental harmonic features
are examined:

1. Histogram of orientation alone.

2. Histogram of orientation combined with magnitude of the funda-
mental frequency components.

3. Histogram combined with relative phase of the fundamental fre-
quency components.

4. Histogram combined with the fundamental period.

5. Histogram combined with relative phase and fundamental period.

The histogram comparisons result in a similarity score between two
gait sequences while the fundamental harmonic features comparisons
result in a distance between two gait sequences. Thus the compar-
ison score of the combined histogram/fundamental harmonic feature
set needs to resolve this discrepancy. A simple solution is to subtract
a multiple of the distance from the histogram similarity score to create
a combination score for comparison, i.e.,

sc = sh − Cdf , (4.4)

where sh is the similarity score from histogram comparison, df is the
distance from components of the fundamental harmonic, and sc is the
new combination similarity score. Because each of these measures have
different dynamic ranges, the coefficient C is used to roughly scale the
distance measure to match the dynamic range of the histogram score.

Recognition performance using the histogram/fundamental harmonic
combinations are shown in Figure 4.11 and in Tables 4.12 and 4.13.

Two of the combination gait features, histogram + fundamental
period, and histogram + period + relative phase appear to be the
most promising of the features. These combinations of features slightly
under-performs in the any-day test but their recognition performances
are on average much better than the orientation histogram along almost
all points of the cumulative match score curve. and are strictly better
than the first harmonic features. Hence we conclude that the histogram
+ period (+ relative phase) feature sets are better for the recognition
tasks.
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Figure 4.11: The cumulative match score curves of five recognition
tests using orientation histogram appearance/fundamental harmonic
combination features.
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any-day 1st 5% 10% 20% 30% 40% 50%

orientation histogram 93 99 100 100 100 100 100

histogram + magnitude 94 99 99 99 100 100 100

histogram + relative phase 86 99 99 100 100 100 100

histogram + fundamental period 96 100 100 100 100 100 100

histogram + rel. phase + period 95 99 99 100 100 100 100

Table 4.12: Any-day recognition results using combinations of orienta-
tion histogram appearance and fundamental harmonic features.

xdayA 1st 5% 10% 20% 30% 40% 50%

orientation histogram 59 88 94 100 100 100 100

histogram + magnitude 66 88 97 100 100 100 100

histogram + relative phase 53 91 97 100 100 100 100

histogram + fundamental period 75 88 97 100 100 100 100

histogram + rel. phase + period 69 97 97 100 100 100 100

xdayB 1st 5% 10% 20% 30% 40% 50%

orientation histogram 25 100 100 100 100 100 100

histogram magnitude 53 78 91 100 100 100 100

histogram + relative phase 34 97 100 100 100 100 100

histogram + fundamental period 56 97 100 100 100 100 100

histogram + rel. phase + period 56 100 100 100 100 100 100

xdayC 1st 5% 10% 20% 30% 40% 50%

orientation histogram 50 77 86 98 98 100 100

histogram + magnitude 48 89 93 95 98 100 100

histogram + relative phase 45 84 93 98 100 100 100

histogram + fundamental period 59 86 91 100 100 100 100

histogram + rel. phase + period 64 86 98 100 100 100 100

xdayD 1st 5% 10% 20% 30% 40% 50%

orientation histogram 43 79 95 100 100 100 100

histogram + magnitude 26 71 90 98 100 100 100

histogram + relative phase 33 88 98 100 100 100 100

histogram + fundamental period 57 90 100 100 100 100 100

histogram + rel. phase + period 60 95 100 100 100 100 100

Table 4.13: Cross-day recognition results using combinations of his-
togram appearance orientation and fundamental harmonic features.
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Chapter 5

Other Experiments

In addition to the recognition tests described in the previous chapter,
we experimented with gender classification using the gait sequence fea-
tures and explored through experimentation with different data sets
the sensitivity of recognition performance to noise in silhouettes.

5.1 Gender Classification

Here we applied the gait average appearance features and the funda-
mental harmonic component features to the task of gender classifica-
tion. Specifically, we used the full 57 dimensional average appearance
features as described in Section 3, as well as a smaller set of features se-
lected using the p-value obtained using analysis of variance. We ranked
each of the 57 features based on the p-value of ANOVA in separating
the genders and set a threshold of p < 10−9, which resulted in the best
6 features (Table 5.1) for gender classification. Intuitively, the third

rank region feature type
1 front calf mean of orientation
2 back mean of orientation
3 head mean of x coordinate of centroid
4 head mean of orientation
5 back calf std of x of centroid
6 back calf mean of x of centroid

Table 5.1: Top 6 average appearance features for gender classification
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and the fourth ranked features—the mean of the x coordinate of the
centroid and the orientation of the head—describe differences in the
shape of the profile-view of the head between men and women in addi-
tion to posture differences. Women tend to have more hair behind the
head than men do, and they also tend to hold up the head slightly more
than men do. The mean orientation of the back, ranked second, is an-
other possible indication of the differences in posture between men and
women. The first, fifth, and sixth ranked features all relate to stride
length (relative to body height) differences between men and women.

A similar process was applied to the fundamental harmonic features
for gender classification. We again used two sets of features: (1) the
complete set of 56 fundamental harmonic features, and (2) the best
features selected based on their significance in indicating gender. Small
p-values from ANOVA on gender class was used as an indicator for the
significance of a feature in gender classification. We set a threshold of
p < 10−9, which resulted in 5 fundamental harmonic features that are
best for gender classification. The five features are listed in Table 5.2.

rank region feature type
1 whole silhouette fundamental period
2 back relative phase of elongation
3 head region magnitude of the x of centroid
4 back thigh magnitude of x coordinate of centroid
5 chest magnitude of the x of centroid

Table 5.2: Top 5 fundamental harmonic features for gender classifica-
tion

We trained and tested support vector machines [42] on our gait
appearance features under two conditions. Under the random-sequence
test, we randomly selected gait feature vectors of approximately half
of the sequences, without regard to the identity of the walking subject,
and tested on the gait features of the remaining sequences. Under
the random-person test, we randomly selected approximately half of
our walking subjects, trained the SVM on all sequences from these
walkers, and tested on all sequences of the remaining walking subjects.
The same subject may appear in both the training and the testing set in
the random sequence scenario (though not the same sequence), whereas
the a subject never occurs in both the training and the testing set in
the random person scenario. Because we saw that people generally
“look” like themselves from the recognition experiments of Chapter
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4, we expect the random sequence test to be easier than the random
person test.

We used an implementation of support-vector machine by Rifkin [35]
and experimented with the linear, Gaussian, and the second degree
polynomial kernels. The SVM’s were trained using the 57 and the 6
gender features and under the random-person vs. random-sequence
conditions. The training and testing are conducted as 20 repeated ran-
dom trials each, i.e., 20 training/testing each of random sequence and
random person experiments × 57 features and 6 best features selected
using the p-values of ANOVA, resulting in four sets of 20 repeated ran-
dom trial experiments for each of the three SVM kernels. The exact
same set of training and testing experiments (with the training and
testing sets replicated) were repeated using the harmonic components
features, the full set of 56 features and the subset of 5 selected using a
threshold on the p-values.

The average results of 20 repeated random trials for the 12 tests con-
ditions using the average appearance features are listed in Table 5.3.
Overall, we found that the results for the random-sequence test is bet-
ter because sequences from the same person, though not the same se-
quences, are in both the training and the testing set.

Random Sequence
Kernel type 57 features 6 features
polynomial(d=2) 91% 94%
Gaussian 93.5% 90%
linear 94% 88%

Random Person
Kernel type 57 features 6 features
polynomial(d=2) 79% 84.5%
Gaussian 66% 83.5%
linear 80% 84.5%

Table 5.3: SVM gender classification results using the average appear-
ance features.

The random-person test condition is a more accurate representation
of how a gender classifier would be used in a real application. The
performance of the three kernels in the random-person case show that
the linear kernel performed at least as well as the Gaussian and the
polynomial kernels. This leads us to believe that the boundary between
the genders may be approximately linear using our data set.
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The significantly better gender classification performance of the 6
feature set in the random person test than the full 57 average appear-
ance features suggests that the SVM may be fitting the class boundary
to variations of the individual subjects that appear in the components
that are not highly associated to gender. This probably is a side effect
of the small size of training samples. We conjecture that this effect will
disappear if many more training samples are used. Alternatively, we
conclude that in the case of small dataset feature selection becomes a
much more crucial issue.

The same set of 20 repeated random trials and 12 test conditions
was repeated using the fundamental harmonic features. The results for
gender classification are listed in table Table 5.4.

Random Sequence
Kernel type 56 features 5 features
polynomial(d=2) 82% 73%
Gaussian 61% 84%
linear 88% 78%

Random Person
Kernel type 56 features 5 features
polynomial(d=2) 52% 61%
Gaussian 58% 72%
linear 74% 70%

Table 5.4: SVM gender classification results using the fundamental
harmonic features.

The gender classification results using fundamental harmonic fea-
tures again confirmed that the random sequence test is the easier test.
The difference in classification performance in the random person case
also shows that the smaller set of features performed better than the
full set of 56 features on average. While the linear kernel performed
quite well in gender classification. The Gaussian kernel seems to have
won by a small margin. A comparison of the results between using the
average appearance features and the fundamental harmonic features
show that the average appearance features are a better representation
for gender classification than the fundamental harmonic features.
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5.2 The Effect of Background Subtraction
Noise on Recognition Performance

The performance of gait recognition using silhouettes of the walking
subjects depends heavily on the quality of the silhouettes after back-
ground subtraction. We argue that it is not just amount of noise in
silhouettes that affect the recognition performance, but also the consis-
tency of noise. In other words, if the noise in silhouettes affects the gait
image features consistently across all frames of all sequences, then the
impact of noisy silhouettes is minimal on the recognition performance.

In addition to the primary dataset used in the recognition experi-
ments in the previous chapter, three more datasets are employed to test
our theory. These three datasets are provided courtesy of Robotics In-
stitute of Carnegie Mellon University, University of Southampton, and
University of Maryland. We will refer to these datasets as CMU, So-
ton, and UMD, respectively. The primary dataset will be referred to as
MITAI. Only the frontal-parallel view, or the view closest to the frontal
parallel view, of the walking subject was used. Each of these data sets
contain gait sequences where each subject was recorded on the single
day, hence the cross-day test described in the previous chapter cannot
be conducted. The UMD dataset produced the noisiest silhouettes of
all four groups. Many of the gait video frames had to be eliminated
because the silhouettes produced from those frames were of very poor
quality. As a consequence, the silhouettes were not sampled evenly
in time, thus removing the possibility of utilizing the harmonic compo-
nents features and the direct matching of gait image feature time series.
For consistency across the different datasets, the recognition tests con-
ducted here involved only data collected on the same day, and only the
average appearance feature and the histogram features are used.

5.2.1 CMU dataset

The CMU dataset is a multi-view, synchronized capture of walker sub-
jects on a treadmill. Each subject performs three different types of
walk: holding a ball, fast walk, and slow walk. Each walking sequence
is 10 seconds or more, recorded at 30 frames/second from several an-
gles. We used the foreground silhouettes provided by CMU. Only the
frontal-parallel view of subjects were included. These silhouettes were
produced using a simple background subtraction of the video frames
from a single image of the background. The effect of this simplistic
background algorithm is evident in the type of noise in the silhouettes,
such as the holes in the torso portion corresponding to background ob-
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jects. Figure 5.1 shows several examples of silhouettes from the given
dataset. Each sequence is divided into 60-frame subsequences for com-
parisons between the subsequences. There are a total of 25 subjects, 23
men and 2 women, with 3 types of walk each (with the exception of one
subject) and 5 subsequences for each walking type (after dividing into
60-frame subsequences), thus resulting in a total of 370 subsequences.

The CMU dataset has the unique characteristic that because the
walking subject is fixed at the same location and is thus under fixed en-
vironmental lighting conditions, the noise in silhouettes is stable across
each sequence, and hence stable between the subsequences that we
used for recognition tests. For example, Figure 5.1 consistently shows
a shadow below the walker and most of the frames show the edges of
the treadmill. In addition, the noise is mostly stable across sequences
of different individuals subject to minor shifting of the position of the
walker on the treadmill. Figure 5.2 shows sample silhouettes from three
different individuals with the same type of silhouette noise as the ex-
amples shown in Figure 5.1.

Using the average appearance gait features, all but one of the 370
subsequences are correctly identified at the first recall with another
subsequence of the same subject doing the same type of walk. The only
exception was caused by one subject coughing and covering his mouth
with one hand in one subsequence of his capture session, resulting in
a significant change in the appearance of the silhouette. However, this
subsequence was still identified with a subsequence of the same subject,
only doing a different type of walk.

5.2.2 Soton dataset

The Soton dataset was collected in front of a background that was
chroma-keyed with green draperies. In addition, the sequences were
segmented to include exactly one full stride (or two steps) from heel
strike to heel strike. Figure 5.3 shows a typical example silhouette
sequence. As should be visually evident from these silhouette images,
the amount of noise is very small compared to the other datasets we
have used, largely due to the chroma-keyed background.

Using the average appearance gait feature, each silhouette sequence
is correctly identified to a sequence of the same individual at the first
recall.
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(a) t=1 (b) t=2 (c) t=3 (d) t=4

(e) t=5 (f) t=6 (g) t=7 (h) t=8

(i) t=9 (j) t=10 (k) t=11 (l) t=12

Figure 5.1: Sample silhouettes from one sequence in the CMU gait
dataset.
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(a) (b) (c)

Figure 5.2: Sample silhouettes from three different individual subjects
in the CMU gait data set. These silhouettes show consistent noise.
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(a) t=1 (b) t=3 (c) t=5 (d) t=7 (e) t=9

(f) t=11 (g) t=13 (h) t=15 (i) t=17 (j) t=19

(k) t=21 (l) t=23 (m) t=25 (n) t=27

Figure 5.3: A typical example silhouette sequence from the Southamp-
ton gait dataset.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.4: A sampling of the silhouettes from one sequence of UMD
gait data.

5.2.3 UMD dataset

The UMD dataset is the most noisy of all four datasets analyzed in
this thesis. The gait data were collected from outdoor environments
under different lighting conditions ranging from cloudy to sunny. Fur-
thermore, the videos were captured under interlaced mode. There is
some amount of flicker in the brightness of the video frames which we
assumed to be caused by the auto gain control of the video camera.
Figure 5.4 shows sample silhouettes from one gait video sequence. Not
only do these silhouettes appear noisy, they also show drastically dif-
ferent types of noise within the same video sequence, such as shadows
on the ground, holes in the body, and heads or feet missing.

We used two scenarios from the UMD datasets that most closely
resemble the conditions under which our primary dataset was collected,
one with a camera that was almost parallel to ground capturing a street
scene, and one with a camera that pointed at a slightly steeper angle to
ground capturing a campus walkway. The recognition results in both
scenarios are shown in Figure 5.5 for two gait representations and the
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random retrieval algorithm.
The performance of the histogram appearance and the average ap-

pearance gait representations are roughly equal, albeit poor.
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(b) camera 8

Figure 5.5: Recognition performances on UMD data.
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5.2.4 MITAI data set

The MITAI dataset was collected on four different days, hence there
are four same-day recognition tests. An example of the silhouettes
obtained from this dataset was shown in Figure 2.2.

The recognition results using the histogram appearance and the
average appearance gait features in the same-day recognition tests are
shown in Figure 5.6. The histogram appearance identified each probe
correctly at the first recall in each test. The average appearance feature
correctly identified each probe after at most the third recall.

5.2.5 Summary on the Effect of Noise

A visual survey of the silhouettes from the four datasets show that the
silhouettes from the Soton dataset are best in that they have very little
noise and no parts of silhouettes missing, followed by the CMU data,
the MITAI data, and the UMD data. While the CMU data included
much more noise than the Soton data, the noise is very consistent across
each sequence and between sequences because the fixed conditions un-
der which the gait data was collected. The performance of both the
average appearance and the histogram appearance gait representations
were perfect identification at the first recall. The silhouettes of MITAI
dataset contain more noise than the Soton dataset, but not signifi-
cantly more than the CMU dataset. However, the noise in the MITAI
silhouettes is much less consistent than the CMU dataset because the
localized lighting conditions around the subject changed as the sub-
ject walked through a scene. The recognition performance accordingly
is lowered for the MITAI dataset. The UMD dataset had the most
amount of noise and most varied noise in its silhouettes. Consequently,
the recognition performance on this dataset is the worst.

We conclude from the experiments on the four datasets that reduc-
ing the amount of noise in the silhouettes improves the gait recognition
performance, and that improving the environmental consistency of the
silhouettes also improves the recognition performance.
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(c) day C
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Figure 5.6: Performance of the average appearance and histogram ap-
pearance in same-day recognition tests on MITAI gait data set.
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Chapter 6

Resolving View
Dependence

One of the biggest constraints of the silhouette representation of gait
presented in Chapter 2 is view-dependence–that is, the camera must
capture a frontal-parallel view of the walking subject. In this chapter,
I will describe joint work with Shakhnarovich and Darrell [37] that
removes the constraint on the placing of the camera with respect to the
walking path. While the joint work pertains to the integration of view
dependent recognition methods, we will describe the components most
related to resolving the view-dependence of our gait representation.

One method of resolving the frontal parallel view constraint is to
record the gait video of a subject from many views—as many as one
believes is necessary to capture the appearance differences between the
different views of a walking subject to accurately retrieve higher level
information. However, this method faces a few challenges. One is to
determine the view of the walking subject so that the correct model
view can be used for comparison. The other is the arbitrariness of
the representation and the size of the representation. We do not know
how many views are enough for a silhouette description that is good
enough for identity or gender classification. In addition, this is a com-
putationally intensive process to represent all possible views of the gait
appearance.

We provide an alternative method that uses the visual hull of a
walker to synthesize a frontal parallel view of the walking subject, which
we call view normalization. The visual hull is the 3D volume carved out
of space by the intersection of the silhouettes of an object as seen from
cameras with wide base lines. This method can accommodate any view
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of a subject walking in an arbitrary path. This is a unified method that
requires only one representation that is derived from the synthesized
frontal parallel view of the subject. Specifically, our algorithm involves
the following steps:

1. A subject is recorded in an environment that is equipped to cap-
ture in real-time the visual hull of the walker.

2. The heading of the subject is estimated from 3D volume data at
each time instance.

3. A virtual camera is positioned at a fixed length from the walking
subject with its optical axis perpendicular to the instantaneous
path of the subject.

4. A frontal-parallel view silhouette of a walking subject is synthe-
sized from the view of the virtual camera.

5. The silhouette can be processed in the same way that a real
frontal-parallel view of a silhouette is processed to obtain a set of
gait sequence features.

The concept of a visual hull was introduced by Laurentini [23]. The
basic idea is illustrated in Figure 6.1. From the point of view of each
camera, each object in its field of view carves out a 3D volume with
its projection of the silhouette onto the image plane of the camera. If
multiple cameras are viewing the same object and if the cameras have
wide baseline, then the intersection of these silhouettes results in a
3D volume which can be rendered from any point of view. We utilize a
real-time visual hull system implemented by Matusik and company [26].
This system uses 4 widely-spaced cameras and can run at close to 14
frames per second, approaching the frame rate that we get by using a
real video sequence.

While we can obtain the 3D volume that is the walking subject, we
still need to find the side view of the subject. Under the assumption
that people generally walk in a direction parallel to the sagittal plane,
the side view can be generated by positioning the camera perpendicular
to the walking path. We used the centroid of the visual hull as a
measure of the path. A Kalman filter was applied to the tracks of the
centroid in 3D to smooth out the noise from centroid estimation. Once
a smooth path was computed, we positioned the camera perpendicular
to the walking path at every time sampling point and synthesized the
frontal-parallel view. Figure 6.2 shows an example of a subject walking
a curved path as seen from one of the cameras, and the synthesized
frontal-parallel view, or the view-normalized silhouette images.
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Figure 6.1: Conceptual understanding of the visual hull of an object.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6.2: Top row: five images in a time series of a subject traveling
in a curved path as seen from one camera view. Bottom row: the
synthesized view-normalized silhouette of the walking subject as seen
from a virtual camera positioned with its optical axis perpendicular to
the curved walking path.
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We extracted the average appearance features both from the sil-
houettes as they are extracted from individual cameras and from the
view-normalized silhouettes and used these features in the person recog-
nition task. Our database contained 27 individuals, comprising a total
of 225 sequences, collected over 3 months. Distances between gait se-
quences are computed in the same manner as in Chapter 3. To test the
effectiveness of view normalization for the purpose of gait recognition,
two tests were conducted. In one, we only used gait sequences recov-
ered from each camera, hence we do not have a side view of the walking
subject. In the second test, we used the view normalized gait sequences
synthesized from the visual hull. In this case we are using the frontal-
parallel view of the walking subject. The rate of correct identification
at the top match was 23% using the non-view-normalized sequences,
and 67% using the view-normalized gait sequences. Clearly the view
normalization was effective in stabilizing the view point of the camera
with respect to the changing walking path.
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Chapter 7

Summary, Discussion,
and Conclusions

The goal of this thesis was to investigate the information contained in
video sequences of human walking and how to extract and represent
that information in ways that facilitate tasks such as person recog-
nition and gender classification. We obtained two classes of features
from a gait video sequence: (1) the image features and (2) the se-
quence features. We have an image representation of gait silhouettes
that describes the local region shape of a walking figure. The time se-
ries of silhouette image region descriptions captured from a gait video
sequence are then aggregated over time using four methods to arrive at
four sequence representations: (1) the average appearance representa-
tion discards the time dimension of the gait sequence and represents the
distribution of the image features using means and standard deviations;
(2) the histogram appearance features improves on the representation
of the image feature distribution by using histograms, but it still does
not contain any information about time dependence; (3) the harmonic
components features retain time information such as the fundamental
period and relative phase information; and (4) the original time series
serves as a baseline representation that retains all available information
from the image feature time series. This set of gait sequence feature
representations explores the amount of detail used in representing the
distribution of image features and in representing the time dependence
of these features.

We have applied the suite of four gait sequence features to two
tasks: person recognition and gender classification. Our experimental
results from the recognition test showed that overall, the image repre-
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sentation we have chosen is sensitive to static changes in the walking
silhouette that are not the direct result of the walking action itself. For
example, changes in the clothing or hair styles of the walking subject
and changes in the environment that alter the noise characteristics of
the silhouette (for example, shadows) will distort the gait image rep-
resentations, and as a consequence, affect the sequence representations
and the performance in recognition tasks. Because we take the view
that representations of gait should include the appearance of a subject
in addition to the kinematic characteristics of the walking subject, this
sensitivity is a desirable characteristic, provided silhouette noise result-
ing from environmental noise can be eliminated or reduced to a minimal
amount. Our results show that the average appearance feature is the
most sensitive to external silhouette appearance changes not related to
the walking action. The fundamental harmonic features are the least
sensitive to changes in the silhouette, and the histogram appearance
features are more sensitive than the harmonic features, but less than
the average appearance features. We found that given the amount
of the noise and the low sampling rate in the time dimension of our
gait image features, we were not able to accurately recover the second
harmonic features for the purpose of recognition, even though clinical
gait analysis shows clear evidence of the second harmonic components
in joint angles. We have also explored combining sequence features
containing independent dimensions—such as combining the histogram
appearance representation with the time-related dimensions of the fun-
damental harmonic features—to improve the recognition performance.
We also experimented with the baseline representation: the original
un-aggregated time series of gait image features. Our results show that
this representation consistently byt marginally outperforms the random
algorithm.

We applied the average appearance features and the fundamental
harmonic features to the gender classification task. We found that the
average appearance features are better for gender classification than the
fundamental harmonic features. In addition, we found that a subset of
average appearance features chosen for their significance in gender clas-
sification resulted in better gender classification results than using the
complete set of features. This subset of gender specific features appeals
to our intuitions about the differing appearances between genders; for
example, women on average tend to have more hair behind the head
and have better upper body posture than men.

The gait image representation chosen in this thesis is clearly view-
dependent. We briefly described our prior work on view normalization
to overcome this dependence. Our algorithm involves using a real-
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time visual hull system to obtain a 3D model of the walking subject,
using the heading direction of the walker to choose a synthetic view
direction, and finally synthesizing a frontal parallel view of the walker.
The newly synthesized view was used in place of silhouettes obtained
from adaptive foreground segmentation from a conventionally recorded
video sequence.

7.1 Alternative Silhouette Representations

One of the areas that could most benefit from further study is the
image representation of the silhouettes. While we have shown that
localized region descriptions of the shape of silhouette provides a rea-
sonable image representation solution, it is unclear that dividing the
walking silhouette in the manner we described in Chapter 2 yields the
best or even close to the best results. There are many alternative rep-
resentations that could be tried.

One solution to the walking silhouette image solution that appeals
to the intuition of humans is to divide the silhouette into biologically
relevant components. There have been medical studies done on cadav-
ers to measure the size and weight of body segments [11]. One simple
alternative to the fixed grid regions as described in Chapter 2 is to
divide the silhouette into regions that have a higher correspondence to
the average body size parameters as measured from cadavers. A fur-
ther improvement would be to use a division of the silhouette that is
adaptive to each person, or even better, to adapt the region divisions to
each frame of a silhouette. Yoo et al. [43] showed a method for extract-
ing a stick figure representation of the frontal parallel walking figure
by adapting a fixed body plan based on medical studies to segment the
body into biologically relevant components. They searched for the joint
positions near the expected location of joints using heuristic methods.
The effectiveness of an accurate joint locator is likely to be heavily
dependent on the quality of the silhouette obtained from background
subtraction. The silhouettes used by Yoo et al. are the same in qual-
ity to the ones we saw in Chapter 5 from the Soton data which, by
visual inspection, are the best ones used in this thesis, mainly due to
the chroma-keyed background.

Other alternatives of fixed template divisions of the walking figures
include the W 4 work by Haritaoglu et al. [14]. The authors divided
the silhouette of the walking figure into fixed template regions, then
fitted a cardboard model of the human body based on a scheme similar
to that used by Ju, Black, and Yacoob [19]. These fitted cardboard
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models were then used to locate the extremities of the silhouette, such
as the tips of the arms and feet. While Haritaoglu et al. did not use the
extremities to identify people, one could imagine that the trajectory of
the extremities could be used for identification purposes if they could
be accurately recovered.

The silhouettes of the walking figure may be used in person recogni-
tion tasks without extracting local descriptions of the silhouette. The
method used by Little and Boyd [24] is one such example. The authors
computed moments of the whole silhouette of the walking figure in ad-
dition to moments based on optical flow in the silhouette regions and
used these features for gait recognition. They achieved good recognition
results on small number of subjects. Other whole silhouette features,
such as a measure of the symmetry of a silhouette, may also be used
as a gait signature.

7.2 Non Silhouette-based Representations

Niyogi and Adelson [31] took a horizontal slice through different points
of the body and across the time dimension of a video sequence to detect
twisted pairs of signals in the X−T plane generated by human walking
action. These twisted pairs of signals were modeled with snakes [21]
and used to distinguish different walkers.

Joint locations recorded using a motion capture system have been
used by Tanawongsuwan et al. [41]. The authors used the joint location
trajectories for direct matching of sequences using dynamic time warp-
ing. The authors showed that while recognition results are excellent
for data recorded on the same day, the results were significantly worse
for data collected on different days. They attributed the degradation
to inconsistencies in the placement of markers on the body. This result
points to a flaw in using joint locations and joint angles directly: they
are very fragile and sensitive to experimental conditions.

While finding joints in silhouettes is a difficult problem, it may be
much easier if a real-time 3D model of the walking figure were avail-
able. As we described in the previous chapter, we were able to use
a real-time visual hull system to synthesize a frontal-parallel view of
the walking gait. Moreover, the visual hull system has a 3D volumet-
ric representation of the walking figure constructed by intersecting the
pyramids projected in space by the silhouettes from each camera view.
The three-dimensional data can remove the ambiguity that results from
using silhouettes in frontal0parallel view, and it contains much more
information about the shapes of the body components.
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7.3 Alternative Sequence Representations

We presented four types of gait sequence features, the average appear-
ance, the histogram appearance, the harmonic features, and the orig-
inal time series of our image features. Two of our sequence features
contain no time information, the average appearance features and the
histogram appearance features. The remaining two contain information
about the time dimension. There are many alternative representations
of the time dimension of gait sequence features.

The time dimension of the gait sequence may be discarded in a
gait sequence representation. For example, Collins et al. [7] detected
key frames of a gait video silhouette sequence and used the silhouettes
directly to compare the appearances of walking subjects.

Other methods retain much more information in the time dimension
of the gait sequence data. The frequency and phase components of gait
sequences have been encoded in self similarity template images [8] which
were then used for person recognition [2]. Gait frequency and phase
information can also be used directly for recognition, as shown by Yoo
et al. in [44]. Gait time dependence may also be encoded in a hidden
Markov model and used for person recognition by gait [20].

7.4 High-Level Characterization from Gait

We have demonstrated in this thesis that gait features extracted from
silhouettes of walking figures contain identity and gender related infor-
mation. While the task of identifying walking subjects is interesting, it
is not a general scenario. In most surveillance situations, an automatic
visual surveillance system does not know all the walking subjects and
hence cannot identify the individuals. In these cases, it is more appro-
priate to provide descriptive information about walking subjects, such
as gender. A further question to ask is, “Does gait contain any other
informative characteristics?”

We argue that gait contains much more information than identity
and gender. One such example is the size of a person. A rounded
silhouette may indicate that the walking subject may be over-weight,
or is wearing thick clothing, but a thin silhouette indicates that the
subject is slim. In addition, the height of a walking subject may be es-
timated by having a calibrated environment, as shown by Bobick and
Johnson [18]. Asymmetry in the gait of a person is also a detectable
characteristic. One may also ask if the walking subject has a hunched
back, exaggerated arm movements, a long/short torso, or has stride
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lengths that are long, or short, compared to the body length. In addi-
tion, a gait characterization system could report information about how
“distinct” a walking subject is with respect to a particular population.

We have done preliminary studies which indicate that some of the
subjects in our gait database are very distinguishable from the rest of
those in the database because they have characteristics that “stand out”
among a population, while other subjects in our gait database are very
“average-looking” and hence easily mistaken for one another. These
preliminary results lead us to believe that gait appearance by itself may
not be enough to characterize some subjects, but combined with other
modalities we may have a much more powerful person characterization
tool. For example, a person with a very average gait appearance may
have a very distinct face or a unique clothing style. Our grand vision of
an automatic person surveillance system combines gait, face, clothing
color and style, daily routine, as well as other aspects of appearance or
activity, and fuses these pieces of information together to arrive at a
customizable description of a walking subject.
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Appendix A

Dynamic Time Warping

Dynamic time warping (DTW) was developed in the speech recog-
nition community to compare two speech signals uttered at different
speeds [36]. The warping is based on dynamic programming methods.
We give a brief description of the algorithm as follows.

Given two sequences, Q and C, of lengths m and n, where

Q = q1, q2, . . . , qm;
C = c1, c2, . . . , cn;

DTW constructs an m× n matrix that contains the distances between
samples qi and cj using, for example, the Euclidean distance,

d(qi, cj) = (qi − cj)2.

A warping function, W , is a function mapping one sequence to the
other,

W = w1, w2, . . . , wk; where, max(m, n) ≤ K < m + n − 1.

The warping function has the following properties:

1. w1 = (1, 1) and wk = (m, n), i.e., the warping function must
map the beginnings of the sequences together, and the ends of
the sequences together.

2. If wk = (a, b), then wk+1 = (a′, b′), where 0 ≤ a′ − a ≤ 1 and
0 ≤ b′ − b ≤ 1, i.e. each warping step may only map to the
adjacent cells and the warping must monotonically increase in
time.

106



DTW uses dynamic programming to minimize the cost of warp-
ing sequence Q and C together. In other words, DTW minimizes the
following function,

DTW(Q, C) = minimize




√∑K
k=1 wk

K


 .

The similarity between the sequences Q and C can be measured with
the above cost function, which in our case is used directly as a similarity
measure between sequences.
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